{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "humanist_vols = pd.read_csv('web_scraped_humanist_listserv.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "film_scripts = pd.read_csv('pudding_film_scripts.csv')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dates object\n", "text object\n", "url object\n", "dtype: object" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "humanist_vols.dtypes" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "imdb_id object\n", "script_id int64\n", "title object\n", "year int64\n", "gross (inflation-adjusted) float64\n", "link object\n", "dtype: object" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "film_scripts.dtypes" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "str" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type('test')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datestexturl
01987-1988From: MCCARTY@UTOREPAS\\nSubject: \\nDate: 12 Ma...https://humanist.kdl.kcl.ac.uk/Archives/Conver...
11988-1989From: Sebastian Rahtz \\nSubject: C++ and Gnu o...https://humanist.kdl.kcl.ac.uk/Archives/Conver...
21989-1990From: Willard McCarty \\nSubject: Happy Birthda...https://humanist.kdl.kcl.ac.uk/Archives/Conver...
31990-1991From: Elaine Brennan & Allen Renear \\nSubject:...https://humanist.kdl.kcl.ac.uk/Archives/Conver...
41991-1992From: Elaine Brennan & Allen Renear \\nSubject:...https://humanist.kdl.kcl.ac.uk/Archives/Conver...
\n", "
" ], "text/plain": [ " dates text \\\n", "0 1987-1988 From: MCCARTY@UTOREPAS\\nSubject: \\nDate: 12 Ma... \n", "1 1988-1989 From: Sebastian Rahtz \\nSubject: C++ and Gnu o... \n", "2 1989-1990 From: Willard McCarty \\nSubject: Happy Birthda... \n", "3 1990-1991 From: Elaine Brennan & Allen Renear \\nSubject:... \n", "4 1991-1992 From: Elaine Brennan & Allen Renear \\nSubject:... \n", "\n", " url \n", "0 https://humanist.kdl.kcl.ac.uk/Archives/Conver... \n", "1 https://humanist.kdl.kcl.ac.uk/Archives/Conver... \n", "2 https://humanist.kdl.kcl.ac.uk/Archives/Conver... \n", "3 https://humanist.kdl.kcl.ac.uk/Archives/Conver... \n", "4 https://humanist.kdl.kcl.ac.uk/Archives/Conver... " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "humanist_vols.head()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# replace and contains\n", "#df[‘column_name’].str.contains(‘pattern’)\n", "# humanist_vols[(humanist_vols['dates'].str.contains('20') == True) &(humanist_vols['dates'].str.contains('19') == False)] \n", "\n", "# df[‘column_name’].str.replace(‘old_string’, ‘new_string’)\n", "\n", "humanist_vols['cleaned_dates'] = humanist_vols['dates'].str.replace('-', '/')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'test2'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'test_test2'.split('_')[1]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 [1987, 1988]\n", "1 [1988, 1989]\n", "2 [1989, 1990]\n", "3 [1990, 1991]\n", "4 [1991, 1992]\n", "5 [1992, 1993]\n", "6 [1993, 1994]\n", "7 [1994, 1995]\n", "8 [1995, 1996]\n", "9 [1996, 1997]\n", "10 [1997, 1998]\n", "11 [1998, 1999]\n", "12 [1999, 2000]\n", "13 [2000, 2001]\n", "14 [2001, 2002]\n", "15 [2002, 2003]\n", "16 [2003, 2004]\n", "17 [2004, 2005]\n", "18 [2005, 2006]\n", "19 [2006, 2007]\n", "20 [2007, 2008]\n", "Name: cleaned_dates, dtype: object" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "humanist_vols['cleaned_dates'].str.split('/')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "humanist_vols['year_start'] = humanist_vols['cleaned_dates'].str.split('/').str[0]\n", "humanist_vols['year_end'] = humanist_vols['cleaned_dates'].str.split('/').str[1]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "humanist_vols['volume_size'] = humanist_vols['text'].str.count('\\n')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEHCAYAAABbZ7oVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABB6UlEQVR4nO3deXzU1bn48c8zWclC9gRIgABJ2BchIohbBQUVReuC2rprl2tbvba12nqrXa+1/Vnb6tVaRbS2KqXuO25VEZBFFtlCgAABsk0gySRksp3fH/NNDCFDJpk1w/N+vfJicr7LnBnjPHO254gxBqWUUqo7tmBXQCmlVOjSIKGUUsotDRJKKaXc0iChlFLKLQ0SSiml3NIgoZRSyq3IYFfA19LT001ubm6wq6GUUv3K2rVrq4wxGV3Lwy5I5ObmsmbNmmBXQyml+hUR2dNduXY3KaWUckuDhFJKKbd6DBIiskhEKkTky05lvxeRbSKyUUReEpHkTsfuFpFiEdkuInM7lc+zyopF5K5O5SNEZJVV/oKIRFvlMdbvxdbxXF+9aKWUUp7xZExiMfAw8EynsmXA3caYFhH5HXA38BMRGQdcCYwHhgDviUiBdc0jwDlAKbBaRF41xmwBfgf80RjzvIg8BtwEPGr9e8gYkyciV1rnLfTu5Sqlgq25uZnS0lIaGxuDXZUTUmxsLDk5OURFRXl0fo9Bwhjzcddv8caYdzv9uhK4zHq8AHjeGOMEdotIMTDdOlZsjNkFICLPAwtEZCtwNnC1dc7TwH24gsQC6zHAUuBhERGjGQmV6tdKS0tJTEwkNzcXEQl2dU4oxhjsdjulpaWMGDHCo2t8MSZxI/CW9Tgb2NfpWKlV5q48DThsjGnpUn7UvazjNdb5xxCRb4nIGhFZU1lZ6fULUkr5T2NjI2lpaRoggkBESEtL61UrzqsgISI/A1qAf3hzH28ZYx43xhQaYwozMo6Z5quUCjEaIIKnt+99n4OEiFwPzAe+0akLaD8wtNNpOVaZu3I7kCwikV3Kj7qXdTzJOl9ZmlrauG7R5/xrzb6eT1ZKqT7oU5AQkXnAncBFxpiGTodeBa60ZiaNAPKBz4HVQL41kyka1+D2q1Zw+ZCvxjSuA17pdK/rrMeXAR/oeMTR/vbJLv5TVMk7m8uCXRWlwlJJSQkTJkwIdjU6nH/++Rw+fDigz9njwLWIPAecBaSLSClwL67ZTDHAMqvpstIY8x1jzGYRWQJswdUNdasxptW6z/eAd4AIYJExZrP1FD8BnheRXwNfAE9a5U8Cf7cGv6txBRZl2WOv58/v7wCgqNwR5NoopQLhzTffDPhzejK76apuip/spqz9/N8Av+mm/E3gmFdozXia3k15I3B5T/U7ERljuOflL4mKsHHptBz+uWovDU0txEWHXZYVFeZ+8dpmthyo9ek9xw0ZyL0Xjnd7/K677mLo0KHceuutANx3333Ex8dTUVHBW2+9hYhwzz33sHDh0TPuFy9ezJo1a3j44YcBmD9/Pj/60Y8466yzSEhI4Lvf/S5vvvkmgwcP5re//S133nkne/fu5aGHHuKiiy6itbWVu+66i48++gin08mtt97Kt7/97W7rePDgQRYuXEhtbS0tLS08+uijnH766R1ph5YuXcpjjz0GQE1NDbm5uXz44Ye8++673HvvvTidTkaNGsVTTz1FQkKCV++nrrjuh17beJBPdlTxo3MLOCM/HYDiCm1NKOWJhQsXsmTJko7flyxZQmZmJuvXr2fDhg289957/PjHP+bgwYMe37O+vp6zzz6bzZs3k5iYyD333MOyZct46aWX+PnPfw7Ak08+SVJSEqtXr2b16tX87W9/Y/fu3d3e75///Cdz587tqNOUKVOOOv6d73yH9evXs3r1anJycrjjjjuoqqri17/+Ne+99x7r1q2jsLCQBx98sPdvUBf61bOfqTnSzC9f28KknCSumZlLib0ecHU5TcpJDm7llOql433j95eTTjqJiooKDhw4QGVlJSkpKaxfv56rrrqKiIgIsrKyOPPMM1m9ejWTJk3y6J7R0dHMmzcPgIkTJxITE0NUVBQTJ06kpKQEgHfffZeNGzeydOlSwNUC2LFjR7frFU4++WRuvPFGmpubufjii48JEu1uu+02zj77bC688EJef/11tmzZwqxZswBoampi5syZvXx3jqVBop954O1tVNc7WXzDyUTYhOGpcURH2NhRXhfsqinVb1x++eUsXbqUsrIyFi5c6PYbfWeRkZG0tbV1/N55rUFUVFTH1FKbzUZMTEzH45YW1zIwYwx/+ctfmDt3Lj0544wz+Pjjj3njjTe4/vrrueOOO7j22muPOmfx4sXs2bOno/vLGMM555zDc8891+P9e0O7m/qRtXsO8Y9Ve7lh1ggmZCcBEBlhY2RGPNs1SCjlsYULF/L888+zdOlSLr/8ck4//XReeOEFWltbqays5OOPP2b69KOHSnNzc1m/fj1tbW3s27ePzz//vFfPOXfuXB599FGam5sBKCoqor6+vttz9+zZQ1ZWFrfccgs333wz69atO+r42rVr+cMf/sCzzz6Lzeb6GJ8xYwbLly+nuLgYcHWBFRUV9aqO3dGWRD/R3NrGz17axOCkWO44p+CoY6MHJbKm5FCQaqZU/zN+/Hjq6urIzs5m8ODBXHLJJaxYsYLJkycjIjzwwAMMGjSoo6sIYNasWYwYMYJx48YxduxYpk6d2qvnvPnmmykpKWHq1KkYY8jIyODll1/u9tyPPvqI3//+90RFRZGQkMAzzzxz1PGHH36Y6upqvva1rwFQWFjIE088weLFi7nqqqtwOp0A/PrXv6agoOCY+/eGhNvSg8LCQhOOmw499p+d3P/WNh6/Zhrnjh901LFHPizm9+9s58tfzCUhRuO+Cm1bt25l7Nixwa7GCa27/wYistYYU9j1XO1u6gf2VTfw0HtFnDMu65gAAZCf6ZripuMSSilf06+dIc4Yw89f+RKbCL+4qPuZIAVZiQAUlddx0rCUQFZPKeWFTZs2cc011xxVFhMTw6pVq4JUo2NpkAhxb31ZxofbK7nngrEMSR7Q7TlDU+OIjbLpymul+pmJEyeyfv36YFfjuLS7KYTVNjZz36ubGT9kINefmuv2vAibkJeZQJF2N6l+ItzGQvuT3r73GiRC2P97ZzuVDie/vWQikRHH/09VkJnIDm1JqH4gNjYWu92ugSII2jcdio2N9fga7W4KUev3HeaZlXu4bmYuk4cm93h+flYiL36xn5ojzSQN8GxbQqWCIScnh9LSUnSDsOBo377UUxokQlBLaxs/fXETmYkx/PBcz+Y4jx701QynwtxUf1ZPKa9ERUV5vHWmCj7tbgpBiz8rYcvBWu67cDyJsZ61CvIz22c4aZeTUsp3NEiEmP2Hj/DgsiLOHpPJvAnHrolwJzt5AHHRETp4rZTyKQ0SIebeVzZjDPziovG92ovWZhPydYaTUsrHNEiEkHc2l/He1nJun5PP0NS4Xl9fkJWo3U1KKZ/SIBEiHM4W7n1lM2MGJXLjaX0b1CvISqTK4eRQfZOPa6eUOlFpkAgRD75bRHldI7/9+kSielgT4U5+lmuGk3Y5KaV8RYNECPhyfw2LP9vNN04ZxlQvci91zuGklFK+oEEiyFrbDD99aRNpCTH8eO4Yr+41OCmWxJhIHZdQSvmMBokg21npYGNpDbfNzvd6pbSIkJ+lM5yUUr6jQSLIqupcO0jlWXtCeMs1w6lO8+IopXxCg0SQVVkzkdITon1yv/ysRA41NFPl0BlOSinvaZAIsvaWRHpCjE/uN9oavNZd6pRSvqBBIsjs9U4ibcJAD3M09aRAp8EqpXxIg0SQVdU1kZYQjc3meQqO48lIjCFpQBRFFTrDSSnlPQ0SQWavd5IW75uuJnDNcCrISqCoTFsSSinvaZAIskqHqyXhSzrDSSnlKxokgszucJLho0HrdgVZidQ2tlBhDYorpVRfaZAIImMMVQ6nz1sSmsNJKeUrGiSCqKGplcbmNp9Nf23XnsNpu45LKKW8pEEiiKocru6gNB8HifSEGNLio9mhOZyUUl7SIBFE7auifbXaurP8rASKKrQloZTyjgaJIGpvSfi6uwlcXU47yh06w0kp5RUNEkFk72hJ+D5I5Gcl4nC2cKCm0ef3VkqdODRIBFF7SyI13vfdTaN1AyKllA9okAgiu8NJ0oAooiN9/5+hPYeTJvpTSnmjx08nEVkkIhUi8mWnslQRWSYiO6x/U6xyEZE/i0ixiGwUkamdrrnOOn+HiFzXqXyaiGyyrvmziMjxniOcVPlhtXW75LhoMhJjdJc6pZRXPPkKuxiY16XsLuB9Y0w+8L71O8B5QL718y3gUXB94AP3AqcA04F7O33oPwrc0um6eT08R9iocjj9Mh7RrkB3qVNKeanHIGGM+Rio7lK8AHjaevw0cHGn8meMy0ogWUQGA3OBZcaYamPMIWAZMM86NtAYs9K4puE80+Ve3T1H2HAFCf+0JOCrGU5tbTrDSSnVN33tDM8yxhy0HpcBWdbjbGBfp/NKrbLjlZd2U3685wgb9vomP7ckEjnS3Mr+w0f89hxKqfDm9Yip1QLw61fVnp5DRL4lImtEZE1lZaU/q+Izza1tHG5o9mma8K50AyKllLf6GiTKra4irH8rrPL9wNBO5+VYZccrz+mm/HjPcQxjzOPGmEJjTGFGRkYfX1JgVbfvbZ3ov+6mvEwrh5MGCaVUH/U1SLwKtM9Qug54pVP5tdYspxlAjdVl9A5wroikWAPW5wLvWMdqRWSGNavp2i736u45wkKllcbbny2JpAFRDE6K1RxOSqk+i+zpBBF5DjgLSBeRUlyzlO4HlojITcAe4Arr9DeB84FioAG4AcAYUy0ivwJWW+f90hjTPhj+X7hmUA0A3rJ+OM5zhAW71ZLI8GNLAlwrr7W7SSnVVz0GCWPMVW4Oze7mXAPc6uY+i4BF3ZSvASZ0U27v7jnCRVUAWhIABZkJ/H2XndY2Q4SP9tFWSp04dMV1kNjrreR+iX4OElmJOFva2Fvd4NfnUUqFJw0SQVLlaCIm0kZ8dIRfn6dgkOZwUkr1nQaJIGlfbW1lIfGb/EzN4aSU6jsNEkFS5Wjy62rrdvExkWQnD2C7znBSSvWBBokgsfs5b1NnBVkJ2pJQSvWJBokgqXI4/ZYBtquCQYnsqqynpbUtIM+nVDAZY3h/azl1jc3BrkpY0CARBMYY7A7/5m3qrCAzkabWNkrsOsNJhb/VJYe46ek1LFlT2vPJqkcaJIKg5kgzLW2GtIB1N+kMJ3XiWPTpbgCKyvTv3Rc0SARBVcfe1oHpbsrLTEBEg4QKf/uqG3h3SxkAxZU6WcMXNEgEQfve1oHqbhoQHcGw1DjN4aTC3t9X7kFEmD0mk+IKB64kEMobGiSCwN7RkghMkADIz9QcTiq8NTS18Pzne5k3YRCn56dTc6SZSusLmeo7DRJB0N6SCNTsJnBNg91dVU9Ti85wUuHp3+v2U9vYwo2zcjvS5BdXaOvZWxokgsDucGITSIkLZJBIpKXNsLuqPmDPqVSgtLUZFi/fzaScJKYOSyHPyjSwU4OE1zRIBEGlo4nU+OiAZmXVGU4qnH28o5KdlfXcMCsXESFrYAyJMZHs0CDhNQ0SQRDI1dbtRmbEYxPN4aTC01PLS8hIjOGCiUMAEBFGZSZod5MPaJAIgkCutm4XGxVBblq8bmWqwk5xhYP/FFXyzVOGEx351UdangYJn9AgEQT2+sCttu4sPytBp8GqsPP0ZyVER9j4xoxhR5XnZyZQUeek5oim5/CGBokgqKpz+n1Huu6MzkqkxF5PY3NrwJ9bKX+oOdLMv9eVctGUIcd88WofvNbWhHc0SATYkaZW6ptaSffz3tbdyc9KpM3Arkqd4aTCw5LV+2hoauWGWbnHHNMZTr6hQSLAOlZbB6EloTOcVDhpaW1j8WclTB+RyvghScccz0mJIybSxo4K/Xv3hgaJALPXW6utg9CSGJEeT6RNNEgEwa5KB//z8pf9bjHjva98yRWPrWDlLnuwq3KM97aWs//wEW7sphUBEGETRmbo4LW3NEgEWFWdtdo6CC2J6EgbI9LjKdLB64B7dcMB/r5yD5/sqAx2VTxWUdfIs6v2sm7vIa58fCU3LV4dUl8wFi0vITt5AOeMG+T2nLzMBE305yUNEgFmr7e6mxIDHyTA1eWkze/A226lrX5948Eg18RzL63bT2ub4eVbZ3HnvNF8XlLNvIc+5s6lGyiraQxq3TYfqOHz3dVcf2rucRel5mcmUHroCEeadLJGX2mQCLD2NOFp8YHvbgLXNNi91Q36P02AtQeJZVvK+8XsMmMML6zZx7ThKUzITuK/zsrj4x9/jRtmjeDlLw5w1h8+5IG3t1EbpN3fnlpeQlx0BFecPPS45+VlJmAM7NTWRJ9pkAiwKoeTxJhIYqMigvL8BVmJGKPTAgOpsbmVEns9Jw1LxuFs4aPtod/ltHbPIXZV1rOw8KsP4ZT4aP5n/jje/+GZzB0/iP/7aCdnPvAhT366G2dL4AJflcPJq+sPcOnUHJIGRB333I4ZThok+kyDRIDZHU0BX23dmc5wCrziCgdtBq4/NZe0+Ghe33gg2FXq0Qur9xEfHcEFkwYfc2xoahx/uvIkXv/+aYwfksSvXt/CnAf/wyvr99PW5v/9G/6xci9NrW1c72bAurPctHgibKKLSL2gQSLAXCk5gjMeAZCbFkd0hI0iHZcImPaupvFDBjJvwiDe31pBQ1NLkGvlnsPZwhubDjJ/0hDiYyLdnjchO4lnbz6FZ26cTkJMFLc9v54FjyxneXGV3+rW1NLGs6v2cGZBBqMyEno8PzrSxvC0OG05e0GDRIDZHU0B27a0O5ERNkZmxOv+vwG0vbyO6AgbuWnxzJ80hCPNrXy4LXS7nN7YeICGplauODnHo/PPKMjgje+fxoNXTKa6volvPLGKaxd9zpYDtb6v26YDVNY5u108505ehs5w8oYGiQALdksCXCuvdRps4Gwrq2NUZgKRETamj0glIzEmpLucXli9j1EZ8UwdluLxNTab8PWpObz/wzP52flj2bDvMBf85RN+snSjz1pNxhieWl7CyIx4zsjP8Pi6/KwESqrqaW7tX2tUQoUGiQBqbTNUNwQnuV9no7MS2H/4CPXO0O3yCCdFZXWMGeQaC4qwCRdMHMwH2ypwhOD7X1xRx7q9h1l48lBEer/fSWxUBLecMZKPf/w1bjl9JP9au49LH13BvuoGr+u2bu8hNpbWcMOsEdh6sRdLXmYCLW2GPXZNR9MXGiQCqLq+CWMIancTuFoSgG7IEgA1Dc2U1TYy2goSABdMGoyzpY33t5YHsWbdW7KmlEirVeCNpLgofnr+WJ66YTr7DzVw0cOf8pmXYxWLPi1hYGwkl07N7tV1eRm6lak3NEgEUMdCuiC3JDpmOOm4hN+1798xOuurIDFtWAqDBsby2obQWljX3NrGi+tKmT0202d/o2cWZPDK904jPSGGaxZ9zqJPd2NM72dAHTh8hLc3l3Hl9GHERbsfTO/OqMx4AJ3h1EcaJAKoqi64C+naDUt1JT7TabD+t73MNXjbuSVhswkXTBrMx0WVIbXXwftbK6hyNHFF4fEXqPXWiPR4Xrp1FmePyeSXr2/hR//a2OsFhc+s2IMxhmtnDu/188dFR5KdPEAHr/tIg0QABTslR7sIm5CXmUCRNr/9bltZHYmxkQxOij2qfP6kwTS1trFsS+h0OS1Zs4/MxBjOLPB8UNhTCTGR/PWb07h9Tj7/XlfKwsdXepza40hTK899vpdzxw0iJyWuT8+vu9T1nQaJAKqsC16a8K4KshJ1v+sAKCqvY3RW4jGDwFOGJpOTMiBkZjmV1zby0fYKLpuWQ2SEfz4WbDbh9jkF/PWaaRSX1zH/L5+ydk91j9e99MV+ao4092raa1f5mQnsrHQEZLFfuNEgEUD2+iaiIoSBA3rXp+oP+VkJHKxpDKnujnBjjGFbWd1RXU3tRFxdTp/uqOJwQ1MQane0pWtLaTP4vKupO3PHD+KlW2eREBPBlY+v5LnP97o91zXtdTfjBg9k+ojUPj9nXmYCjc1t7D98pM/3OFFpkAig9m1L+zK10NcKMttnfGhrwl/Kahupa2zpNkgAzJ84hJY2wzubywJcs6MZY/jXmn1MH5FKbnp8QJ6zICuRV249jZmj0rn7xU3c8/Kmbvfa+LS4ih0VDm48bYRX/9+053DSDMi9p0EigOz1TUHZbKg77R9cuqjOf7aVHTuzqbMJ2QMZnhYX9PThq3ZXU2JvOCqZXyAkxUXx1PUn8+0zR/Lsyr1884lVHV2y7Z5aXkJ6QjQXTj42h1Rv6H7XfadBIoCqHM6gbDbUnezkAQyIitAZTn7UnrPJXUtCRJg/aTCf7bRjdzi7PScQlqzZR2JMJOdP9O6DuC8ibMLd543lT1dOYeP+w1z08KdsKq0BYHdVPR9sq+DqU4YTE+ld1uTkuGjSE2I0SPSBV0FCRP5bRDaLyJci8pyIxIrICBFZJSLFIvKCiERb58ZYvxdbx3M73eduq3y7iMztVD7PKisWkbu8qWsocOVtCo0gYbMJ+VkJHR9kyveKyurIGhhDcpz71uP8SUNobTO89WVwupxqG5t5c9NBLpwyhAHRwUlfD7BgSjZLv3MqNhEue+wzXv5iP09/VkJUhPDNGcN88hx5mfG6gLQP+hwkRCQb+AFQaIyZAEQAVwK/A/5ojMkDDgE3WZfcBByyyv9onYeIjLOuGw/MA/5PRCJEJAJ4BDgPGAdcZZ3bLxljqHQ4g77aurOpw1JYu+eQbkDkJ65B64HHPWfMoERGZcQHbZbTaxsO0NjcFpAB655MyE7i1e/NYvLQZG5/YT3PrtzD/ElDyEyM7fliD+RnJlJc4ejTYr4TmbfdTZHAABGJBOKAg8DZwFLr+NPAxdbjBdbvWMdni2skagHwvDHGaYzZDRQD062fYmPMLmNME/C8dW6/5HC20NTSFjItCYA5Y7NwtrTxqR9TO5+oWlrbKK50MDrr+OmsXV1OQ1i1u5qK2sBvCbpk9T5GZyUyOScp4M/dnbSEGP5x8ylcO3M4Nptw02kjfHbvvMwE6hpbjhn3UMfX5yBhjNkP/AHYiys41ABrgcPGmPbMZaVAe6KVbGCfdW2LdX5a5/Iu17gr75c6ti0NoZbE9BGpJMZE8sG20FnQFS5K7A00tbT12JIA18I6Ywh4l9O2slo2lNZwRR+T+flLVISNXy6YwKb7zmVCtu+C11cznLTLqTe86W5KwfXNfgQwBIjH1V0UcCLyLRFZIyJrKitDM09/+8BkKLUkoiNtnFGQwftbK3SRkY9t72FmU2f5WYmMzkoMeJfTktWlREUIl5wUmt+9vB2s7ipfZzj1iTfdTXOA3caYSmNMM/AiMAtItrqfAHKA/dbj/cBQAOt4EmDvXN7lGnflxzDGPG6MKTTGFGZk+D6lgC9UWUEilFoSALPHZlJR5+TLAzXBrkpY2V5eh01cixY9MX/SYFaXHOJgTWAWezlbWnnpi1LOHTeI1CDnEguUjMQYEmMjNUj0kjdBYi8wQ0TirLGF2cAW4EPgMuuc64BXrMevWr9jHf/AuEaQXgWutGY/jQDygc+B1UC+NVsqGtfg9qte1Deo2rubMkKoJQFw1uhMbALvba0IdlXCyvayWnLT4omN8uzb8PzJQwB4I0BrJt7bUsGhhmYuL/QuJXh/IuLKWaYL6nrHmzGJVbgGoNcBm6x7PQ78BLhDRIpxjTk8aV3yJJBmld8B3GXdZzOwBFeAeRu41RjTao1bfA94B9gKLLHO7ZfaWxIpIfatLTU+mqnDUkJyb4P+rKjc0ZGS3RMj0uMZP2RgwBbWLVmzjyFJsZzeix3ewkF+ZgLFFbr5UG94NbvJGHOvMWaMMWaCMeYaa4bSLmPMdGNMnjHmcmOM0zq30fo9zzq+q9N9fmOMGWWMGW2MeatT+ZvGmALr2G+8qWuw2R1NpMRFEeWn5GnemD02i80HagPW1RHujjS1UmKvd7uIzp35k4awft9hn+zidjwHDh/h4x2VXDYth4he7PAWDvIyE6hyOEMiX1Z/EXqfWGEqFPa2dmfO2EzAtZ+A8t6OijqMcb/S2p35k1wrnt/Y5N/WxNK1pRgDl4fA2ohA0/QcvadBIkBcq61Dq6upXV5mAsNS4/hgmwYJX+gpHYc7Q1PjmJyT5NdxibY2w5I1+zh1VBpDU/u2N0N/lp+pW5n2lgaJAAnlloSIMHtsJsuLq3T1tQ9sL6sjOtJGblrvM6rOnzSETftrKKnyT7/5yl12Sg8dYeHJJ14rAlw5y2KjbBokekGDRIBUOZwhN7OpM1197Tvby+vIz0zoU3//BX7ucnphzT4GxkYyd/wgv9w/1Nlswsj0BF1Q1wsaJALA2dJKbWNL0Pe2Pp6Tc12rr3WWk/e2u9loyBNDkgcwbXgKr23w/cK6moZm3vqyjItPyvZ4am44ys/SrUx7Q4NEAFTXu2ZSBHtv6+PpWH29TVdfe+NQfRMVdU7G9DFIgGsAe1tZnc8/yF7ZsJ+mltBI5hdMeRkJ7D98hIamlp5PVhokAqGqzsrbFMItCXCtvq6sc7Jpv66+7qvt1v4cvVkj0dX5Ewcjgs/TdLyweh/jBg/0aT6k/qh9htNOXS/hEQ0SAVBVb+VtCuGWBMDXrNXX2uXUd+0zm8Z4kNjPnayBsZycm8rrGw/6LK31l/tr2Hyg9oQdsO6sPVVKcaWuvPaEBokAqLJSE6eHyK507qTERzNteArv61TYPttWVsfA2EiyBnr33/rCSYMprnD4bHvZf63ZR3SkjQVThvjkfv3Z8LR4Im2i4xIe0iARAPaOMYnQ7m4CXX3traLyOsYMGuh16u15EwZj81GXU2NzKy+vP8Dc8YOOu0veiSIqwsbwtDh26P7uHtEgEQBVdU4GREUQFx3Z88lBNnuMrr7uK2MMRV7MbOosIzGGmaPSfNLl9M7mMmqONLPwBB+w7iw/M5HiSg0SntAgEQD2+qZ+0YqAr1Zf67hE7x2oaaTO2UKBD4IEuBbW7a6qZ/OB2j7fo7LOyTMr9pCTMoBTR6X5pF7hIC8zgT3WxlDq+DRIBECVw0laiI9HtOtYfb3TrlMEe2l7mevD3Jvpr53NGz+ICJv0OjNsY3Mrb2w8yI2LVzPjf99n7Z5D3HL6SGwnWDK/48nLTKC1zVBi1xlOPdEgEQBVjqaQ2pGuJ3PGZtHU0sanO/yz+rqtzbC6pDrsNqTfZs1sKsj0TZBIiY9mVl46r2880ON7ZYxh7Z5D/PSlTUz/zXvc+s91bDlQyy2nj+S9O87gulNzfVKncKGJ/jwX+p3kYaDK4QyZjeY98dXq6wrO9UP6hmdWlHDfa1v4x82nMCsv3ef3D5aisjoGJ8WSFBfls3vOnzSYO5duZENpDVOGJh9zfP/hI7y0rpQX1+1nV1U9sVE25o0fxKXTcjh1VPoJlwrcU6MyEhDRIOEJDRJ+1tZmqK7vXy2J6EgbZ4zO4IPtrtXXvuymqGts5s8fFAOwvLgqrILENh8NWnc2d9wgfhaxiTc2HugIEvXOFt7+sox/rytlxS47xsD0Eal858xRnDdxEImxvgtS4WpAdATZyQM0h5MHNEj42eEjzbS2mZDb27onc8Zm8sbGg2zaX8Pkbr7B9tXfPt5FdX0TgwbGsmKX3Wf3Dbbm1jZ2VdZzZoFvd3pLiovijPwM3th4kK+NzmTpulLe/rKMhqZWhqXGcdvsfL5+Ug7D0k68tN/eysvUHE6e0CDhZ3Zr29L+1JIAOKvgq9XXvgoSFXWN/O2T3VwwaTC5aXE89p9dOJwtJMT0/z/Dkqp6mlrbfN6SAJg/eTDvb6vg6idWkRgTyUWTh3DptBwKh6d4vR7jRJafmcCKnXZa24x2yx1H//+/M8RVWkGiv7Uk2ldfv7e1gjvOHe2Te/75/R00t7bx43NHU3roCI98uJPVJdV8bXSmT+4fTB2D1l7kbHLnvAmD2XKglgnZScwdP+iEzuDqS3mZCThb2ig91MDwPuz9caLQ2U1+Zne4VluH8l4S7swem8WWg7UcOOz96utdlQ6e+3wfV58yjNz0eKYNTyEqQli5Mzy6nIrK64iwScesGV+KjYrgZxeMY8GUEzvFt6/pDCfPaJDws6qOlkT/CxIde1/7IJfTH97dTkykje+fnQ+4Bg5PGprCyjAZl9hWVkduWpx+iPcjeRm6laknNEj4md3RRIRNSB7Q/2acjMpIYHia96uvv9h7iDc3lXHL6SPJ6JQJd8aoNDbtr6G2sdnbqgZdUbnvZzYp/0qKiyIjMUZnOPVAg4SfVTmcpMZH98vVriLC7DFZfObF6mtjDPe/tY30hGhuOWPkUcdmjEylzcDq3dW+qG7QNDS1sLe6gdFZfU8ProIjL0NnOPVEg4SfVTmaQn6zoeOZMzbTq9XXHxVVsmp3NT+YnX/MLKapw1KIjrSxop+PSxSVOzAGRg/y/XiE8q/8rAR2VjjCbvW/L2mQ8DN7vfOoLpb+prDT6uveam0z/O6tbQxPi+PKk4cdczw2KoKpw5JZubufBwlrZtNoLzYaUsGRl5lAnbOF8lpnsKsSsjRI+JkruV//bUm0r77uy97XL3+xn21ldfzo3NFER3b/pzZzZDqbD9RS09B/xyW2ldURG2VjWKouaOtv8jJ0hlNPNEj4mb2fJffrzpyxmVQ5nGzsxd7Xjc2tPLisiInZSVwwcbDb82aOSsMYWNWPWxNF5XXkZybqgqx+KK99K9MK3crUHQ0SftTQ1EJDU2u/nP7aWefV1556duUe9h8+wt3njTnuoP3koUnERNr6dYoOf+RsUoGRkRDDwNhIneF0HBok/Kh9IV16P1tt3VVKfDSFw1N5z8NxiZojzTz8YTFnFGRwag8J/GIiIyjMTem3g9d2h5Mqh9Nne0iowBIRzeHUAw0SflTZT/M2dWf22Ey2erj6+rH/7KTmSDM/medZOo+ZI9PYVlbHIWsv8P5ke7n/0nGowMjPTGSnbmXqlgYJP/qqJREeQQJ6Xn1dVtPIok93c/GUbMYP8WwPjZnWtpr9cVxiuzWzSVsS/VdeZgJVjqZ++SUlEDRI+FFVP03u1x1PV18/9F4RxsAd5xR4fO+J2ckMiIrol11OReV1JFsrd1X/1JHDSVsT3dIg4Uf2MAoSnqy+3lFex5I1+/jmjOEM7cV00OhIm2tcoh8OXm8rq2N0VqKm7O7H2oPEjnINEt3RIOFHVY4mEmMjiYkMj6Rv7auvP3Gz+vqBd7YTHx3J987O6/W9Z45Ko6jc0dH66g/a2gxFZXXa1dTPZScPYEBUhA5eu6FBwo+qHM5+mSLcnZNHpJIYG9ltl9OakmqWbSnnO2eNIrUPiwdnjrTGJXb1nzxO+w8fob6plQINEv2azSaMzIjX7iY3NEj4UZXDGRZdTe2iImycWZDBB9sqj1p93Z7ELzMxhhtm5fbp3hOzk4iPjmDFrr7liAoGHbQOH/mZCRSX64K67miQ8KNwWG3d1ZyxWcesvl62pZw1ew5x+5wC4qL7ttlhZISNk0ek9qvB6/bpr/k6/bXfy8tM4EBNI/XOvmU7DmcaJPwo3FoSAGcWZBy1+rqltY0H3tnOyIx4rijM8ereM0emsbOynoraRl9U1e+2l9WRnTyAgbH9b68QdbT2wWtdL3EsDRJ+0tLaxqGG5rBrSXRdff3vdaUUVzi4c+4YIiO8+3NqXy/RX2Y5bdd0HGEjL9P131FnOB3Lq/+rRSRZRJaKyDYR2SoiM0UkVUSWicgO698U61wRkT+LSLGIbBSRqZ3uc511/g4Rua5T+TQR2WRd82fpR/MMq62FOf09b1N32ldf76x08MdlOzhpWDJzx2d5fd/xQ5JIjI1kpR8Hr+9/axuLPt3t9X2aWtrYWenQldZhYnhaHJE20cHrbnjbkvgT8LYxZgwwGdgK3AW8b4zJB963fgc4D8i3fr4FPAogIqnAvcApwHTg3vbAYp1zS6fr5nlZ34CpslZbZ4RZdxPA7LGugPDdZ9dSVtvI3eeN9ck6gQibcMqIVL/te11UXsdj/9nJL1/fwofbvdu3e3dVPS1tRgetw0RUhI3c9HidBtuNPgcJEUkCzgCeBDDGNBljDgMLgKet054GLrYeLwCeMS4rgWQRGQzMBZYZY6qNMYeAZcA869hAY8xK49o26plO9wp5X622Dr+WxKiMeHLT4igqdzBnbCbTR6T67N4zRqaxu6qeshrfj0ss+nQ3MZE2CrIS+OGSDV49h+ZsCj/5muivW960JEYAlcBTIvKFiDwhIvFAljHmoHVOGdDeD5EN7Ot0falVdrzy0m7KjyEi3xKRNSKyprKy0ouX5Dv2+vBJ7teViHDOuCxsAj+eO8an954xsn1cwrdTYe0OJy9+sZ+vT83h0W9Oo7G5lR889wUtrW19ut/2sloibMKozHif1lMFT15mAnvs9ThbWoNdlZDiTZCIBKYCjxpjTgLq+aprCQCrBeD3zWONMY8bYwqNMYUZGRn+fjqPVNW1j0mEX3cTwG1zCnj1e6f5fOB23OCBJA2IYuVO345L/HPVXppa2rhxVi6jMhL4zSUT+Lykmj+9v6NP99teVsfI9PiwWU2vXEGizUBJVUOwqxJSvAkSpUCpMWaV9ftSXEGj3Ooqwvq3vfN3PzC00/U5VtnxynO6Ke8XquqdREfaSIzp27qBUJcQE8mEbM+yvPaGzRqX8OUMp6aWNp5ZuYczCjI61jRcclIOl0/L4eEPi/nUTZqR49leXqcrrcNMRw4n3aXuKH0OEsaYMmCfiLRvGjAb2AK8CrTPULoOeMV6/CpwrTXLaQZQY3VLvQOcKyIp1oD1ucA71rFaEZlhzWq6ttO9Ql5VXRPp8dGa+K0PZo5KY291A/s92LvCE69vPEBlnZMbu6wG/8WC8eRlJHD7C+upqPN8fMLhbGFf9RHG6HhEWBmVkYCI7nfdlbezm74P/ENENgJTgN8C9wPniMgOYI71O8CbwC6gGPgb8F8Axphq4FfAauvnl1YZ1jlPWNfsBN7ysr4BY693kq7po/ukY1zCB6uvjTE8+elu8jITOLPg6K7IuOhIHvnGVBzOZm5/fj2tbZ71jO5oH7TWlkRYiY2KICdlgAaJLrzqCzHGrAcKuzk0u5tzDXCrm/ssAhZ1U74GmOBNHYMl3JL7BdLorERS4qJYsdPOZdO8W8X9+e5qNh+o5TeXTOi2VVeQlcgvL5rAnf/eyCMfFvOD2fk93lNzNoWv/MxEDRJd6IprPwnHvE2BYrMJM0am+WS9xKLlu0mOi+LrJ7kPNpcX5nDxlCE89F6RR8+5rayOAVERDE3xfM8M1T/kZSawq6re41bliUCDhB8YY7A7msJyjUSgzByVxv7DR9hX3feZJnvtDby7pZyrpw9jQLT7WUgiwq8vmUhuWjy3Pf9Fx2ZR7hSV11GQlYDNpuNN4SYvI4Gmljav/u7CjQYJP6htbKGptY30MJ3+Ggi+GJdY/FkJESJcOzO3x3MTYiJ5+OqpHGpo5o4lG45Khd6V5mwKX3lZ7TOctMupnQYJP2hfba3dTX2Xn5lAekJ0n6fC1jU2s2TNPi6YNJhBSbEeXTNuyEB+Pn8c/ymq5PFPdnV7TpXDib2+idGDBvapXiq0dex3rUGigwYJP7BbeZs0SPSdiHDKyDRW7LTjmvPQO0vWlOJwtnDTaSN6dd03ThnGBRMH8/t3trN2z7EL+toHrUfr9NewNDA2iiFJsTz0XhHf+ftaXttwwO2e7icKDRJ+8FXeJu1u8sbMkWmU1Tayx967/uHWNsPiz3ZTODyFSTnJvbpWRPjfSyeSnTyA7//zCw43NB11fFt7kNDuprD1xHUnc+XJQ1m79xDff+4Lpv3qPW795zre2nSQxuYTL2WHBgk/sGt3k0/0dX+JZVvK2Vd9pNetiHYDY6N4+OqTqHQ4+dG/Nh7VkikqqyM1PlrHm8LYuCED+cWCCay8ezbP3TKDS6dls3Knne/+Yx3TfrWM257/gnc3l50wOZ7CM2dEkFU6mhCBlDjdscwbI9PjyUiMYcVOO1dNH+bxdYs+3U128gDOGdf3PS4m5STz0/PH8ovXtrBoeUlHwNlWXsforERdSX8CiLAJM0elMXNUGvddOJ5Vu6t5feMB3vqyjFfWHyAxJpJzxmcxf9JgTsvLIDoyPL9za5DwA7vDSWpctNc7tZ3oRISZI9NYscs1LuHJB/Om0ho+L6nmngvGev3+X39qLit22rn/ra0UDk9hYnYSO8rruKJwaM8Xq7ASGWFjVl46s/LS+eWCCXy2087rGw7wzuYyXly3n4GxkcwdP4j5k4dw6qg0osLo//3weSUhJBz3tg6WmaPSqKxzsrOy3qPzFy3fTXx0BFec7P0HuYjw+8smk5kYy/eeW8eWg7U0NLXqeMQJLirCxpkFGfz+8smsueccFl1fyJxxWbz9ZRnXLfqcix9ZHlZjFxok/EBXW/vOTGu9hCcroctrG3l94wEuLxzKwFjfdPUlxUXxl6tP4uDhRr7997WADlqrr0RH2jh7TBYPXjGF1ffM4XeXTmTzgVoeeHt7sKvmMxok/MDVktAg4QvD0+IYnBTr0eD131fsoaXNcEOXbK/emjoshTvnje7ISqu70anuxEZFsPDkYVw7cziLlu9mebFvN84KFg0SfuBqSWh3ky+IuPI4rdp1/PUSjc2t/GPVHuaMzWJ4mu93i7v5tJHMGZvFmEGJJITpHiHKN+4+byyjMuL54ZIN1DQ0B7s6XtMg4WONza3UOVu0u8mHZo5Mo8rRdNxUCS99sZ9DDc3cOKtv0157YrMJf71mGi/fOssv91fhY0B0BA8tPIkqh5N7Xvky2NXxmgYJH7PXt6+21paEr7Svl3A3LmGMYdGnuxk3eCAzRqb6rR4RNiE2SrcrVT2bmJPE7XPyeW3DAV5Z32821OyWBglLRW0jH26r6PnEHlTVWaut47Ul4StDU+PITh7gNtnfJzuq2FHh4MbTRuj6BRUyvnPmKKYNT+Gel7/02S6LwaBBwnL/29v43j/XUdvoXR+ivV5TcvjDzFGu/SW6y866aPlu0hNiuHDy4CDUTKnuRUbYePCKybS1GX7UQ2bhUKZBwnL9qbnUN7XyrzWlXt2nqk6T+/nDjJFpHGpoZnv50ZvUF1fU8dH2Sq6dOZyYSO0KUqFleFo8P79wHCt22Xny093Brk6faJCwTMpJZtrwFJ7+rMSrXamq6jVvkz905HHq0uX01PISoiNtXH2K52k7lAqkKwqHcu64LH7/zna2ldUGuzq9pkGikxtm5bK3uoH3t5b3+R5VdU3ER0ccdyc01XvZyQMYlhp31OD1ofom/r2ulEumZGtQViFLRPjfr09k4IAobn9+fb9LDKhBopN54wcxJCmWp5aX9Pke9npdSOcvM0emsWp3dUff7nOr99LY3MYNp+UGt2JK9SAtIYYHLpvItrI6/t+7RcGuTq9okOgkMsLGNTNzWbHLztaDfWsWVjmcOv3VT2aMSqXmSDNbDtbS3NrGM5/t4bS8dMboLnGqHzh7TBbfOGUYf/tkl1fb8gaaBokurpo+lNgoG4v72JqwO5q0JeEnM0emA671Em9uOkhZbSM3aitC9SM/u2AsuWnx/HDJemqO9I/V2BokukiOi+aSk3J4ef1+quuber6gC1dLQoOEPwxKimVEejwrdtpZ9OluRqbHc1ZBZrCrpZTH4qIj+ePCKZTXObm3n6zG1iDRjRtm5eJsaeO5z/f26rrWNkN1veZt8qcZI9P4T1ElG0pruGFWLjabLp5T/cuUocl8/+w8Xl5/gNc2HAh2dXqkQaIbBVmJnJaXzjMrSmhubfP4usMNTbQZnf7qTzNHpdHSZhgYG8ml03KCXR2l+uR7X8tjytBkfvbSJg7WhPZqbA0Sbtx4Wi7ltU7e3HTQ42uqHK7uKV1t7T8zRqYSaRO+MWM4cdGajVX1T5ERNv64cArNrYYf/Su0V2NrkHDjrIJMRqTH92o6rN2hC+n8LTMxljdvO53/nlMQ7Koo5ZUR6fH8z/xxLC+2s/izkmBXxy0NEm7YbMJ1M4ezft9hvth7yKNrKjuChLYk/KkgKzFsN51XJ5arpg9l9phM7n97G0VdUs6ECv0/7TguKxxKYkykx60Ju0PzNimlPCci3H/pJBJjIrn9+fU0tXg+BhooGiSOIyEmkssLh7rm5Nc09nh+lcNJpE18tr+yUir8ZSTGcP+lk9hysJYHl4XeamwNEj24/tRcWo3h2ZV7ejzXtZAuWqdlKqV65ZxxWVx58lAe+89OHvmw+Lhb9QaaBokeDEuLY87YLP6xag+NzcdPzFXlcOpmQ0qpPvnFgvEsmDKE37+znbv+valX0+/9SYOEB26YlcuhhuYetyGsqm8iPVGDhFKq92IiI3ho4RS+f3YeL6zZx42LV3u9CZovaJDwwMyRaYwZlMhTy0uO2wysqnOSHq8zm5RSfSMi/PDc0Txw2SRW7LRz+aMrgr71qQYJD4gIN8zKZVtZHSt2dZ+90RiDvd6pLQmllNeuKBzK0zdO50DNES5+ZDmbSmuCVhcNEh5aMCWblLgot9Nh65taaWxuI01bEkopH5iVl86L3z2V6AgbV/x1Be9uLgtKPTRIeCg2KoKrTxnGe1vL2WtvOOa4rrZWSvlaflYiL916KgVZCXz72bUsCsI+2V4HCRGJEJEvROR16/cRIrJKRIpF5AURibbKY6zfi63juZ3ucbdVvl1E5nYqn2eVFYvIXd7W1VvXzMglQoSnV5Qcc6zKChKat0kp5UuZibE8/62ZnDM2i1++voX7Xt1MawBzPfmiJXEbsLXT778D/miMyQMOATdZ5TcBh6zyP1rnISLjgCuB8cA84P+swBMBPAKcB4wDrrLODZpBSbGcP3EwS1bvw+FsOepYla62Vkr5yYDoCB795jRuPm0Eiz8r4dt/X0N9l88gf/EqSIhIDnAB8IT1uwBnA0utU54GLrYeL7B+xzo+2zp/AfC8McZpjNkNFAPTrZ9iY8wuY0wT8Lx1blDdMCuXOmcLS9fsO6q8SrublFJ+FGET7pk/jl8tGM8H2ypY+PgKymt7zgThLW9bEg8BdwLtqz7SgMPGmPYQVwpkW4+zgX0A1vEa6/yO8i7XuCsPqpOGpTBlaDJPr9hzVHrf9rxNqTpwrZTyo2tm5vLEdYXsqqznkkeWs62s1q/P1+cgISLzgQpjzFof1qevdfmWiKwRkTWVlZV+f74bZuWyu6qej4oqOsqqHE6SBkRpdlKllN+dPSaLJd+eSasxXPboCj4u8t/nnjefaLOAi0SkBFdX0NnAn4BkEWnfDSYHaF+mvB8YCmAdTwLsncu7XOOu/BjGmMeNMYXGmMKMjAwvXpJnzp84mKyBMUdNh7U7dNtSpVTgTMhO4uVbZ5GTMoAbFq/u9XbLnupzkDDG3G2MyTHG5OIaeP7AGPMN4EPgMuu064BXrMevWr9jHf/AuJYvvwpcac1+GgHkA58Dq4F8a7ZUtPUcr/a1vr4UFWHj2pm5fLKjih1WDvhKh5M0HY9QSgXQ4KQBLP3uqZyWl87dL27q1U6anvJH38hPgDtEpBjXmMOTVvmTQJpVfgdwF4AxZjOwBNgCvA3caoxptcYtvge8g2v21BLr3JBw1fRhxETaeMraUcrucJKhQUIpFWAJMZE8eV0h/zN/HHPGZvn8/j7ZJNgY8xHwkfV4F66ZSV3PaQQud3P9b4DfdFP+JvCmL+roa6nx0Vw8JZsX15Vy59zRVFlpwpVSKtAiI2zcdNoIv9xbR1m9cMNpuTQ2t/H3FXuoOdKs01+VUmFHg4QXxgwayMyRaTz+yS5AV1srpcKPBgkv3TArl7pG17IQbUkopcKNBgkvzR6bxbDUOACdAquUCjsaJLwUYRNunJWLCGQnxwW7Okop5VM+md10orvu1FzOKMhgUFJssKuilFI+pS0JHxARRmYkBLsaSinlcxoklFJKuaVBQimllFsaJJRSSrmlQUIppZRbGiSUUkq5pUFCKaWUWxoklFJKuSWufX/Ch4hUAnv6eHk6UOXD6viK1qt3tF69o/XqnVCtF3hXt+HGmGO29gy7IOENEVljjCkMdj260nr1jtard7RevROq9QL/1E27m5RSSrmlQUIppZRbGiSO9niwK+CG1qt3tF69o/XqnVCtF/ihbjomoZRSyi1tSSillHJLg4RSSim3wj5IiMgiEakQkS87lU0WkRUisklEXhORgVZ5lIg8bZVvFZG7rfLRIrK+00+tiNwepJfkV718v6JF5CmrfIOInGWVx4nIGyKyTUQ2i8j9wXk1/uej9yuxy99XlYg8FJQX5GciMlREPhSRLdbfxm1WeaqILBORHda/KVa5iMifRaRYRDaKyFSrfIr1Hm+2yhcG83X5iw/fr691+RtrFJGLPaqEMSasf4AzgKnAl53KVgNnWo9vBH5lPb4aeN56HAeUALld7hcBlOFaeBL01xfk9+tW4CnrcSawFtcXjzjga1Z5NPAJcF6wX1uovl/d3HMtcEawX5uf3q/BwFTrcSJQBIwDHgDussrvAn5nPT4feAsQYAawyiovAPKtx0OAg0BysF9fqL5fXe6ZClQDcZ7UIexbEsaYj3G9IZ0VAB9bj5cBl7afDsSLSCQwAGgCartcOxvYaYzp66rukNbL92sc8IF1XQVwGCg0xjQYYz60ypuAdUCOf2seHL54vzpfKCIFuALIJ/6pcXAZYw4aY9ZZj+uArUA2sAB42jrtaeBi6/EC4BnjshJIFpHBxpgiY8wO6z4HgArgmNXC/Z2v3q8ut70MeMsY0+BJHcI+SLixGdebCXA5MNR6vBSox/WtZC/wB2NM1w+AK4HnAlHJEOLu/doAXCQikSIyApjW6RgAIpIMXAi8H5iqhoQ+v1+4/r5eMNZXvnAmIrnAScAqIMsYc9A6VAZkWY+zgX2dLiu1yjrfZzquFutOf9Y32Hz1ftHLz7ATNUjcCPyXiKzF1YRrssqnA624mq8jgB+KyMj2i0QkGrgI+Fdgqxt07t6vRbj+CNcADwGf4Xr/ALBaZM8BfzbG7ApkhYOsT++X5YT4EiIiCcC/gduNMUe11q0A6VGQtL4l/x24wRjT5vOKhggfv18TgXc8fe7IXtQzbBhjtgHnQkfz/gLr0NXA28aYZqBCRJbj6g5o/4A7D1hnjCkPcJWDyt37ZYxpAf67/TwR+QxXn2m7x4EdxpiHAlbZENDX90tEJgORxpi1Aa1wgIlIFK4PvH8YY160isutbqSD1gdZhVW+n6NbWzlWGdaEgDeAn1ldK2HJV++X5QrgJeszziMnZEtCRDKtf23APcBj1qG9wNnWsXhcAz/bOl16FSfAt7yu3L1f1iymeOvxOUCLMWaL9fuvgSTg9mDUOZj68n5Zwv7vS0QEeBLYaox5sNOhV4HrrMfXAa90Kr/WmrUzA6ixPhijgZdw9b8vDVD1A85X71en63r/Nxbs0Xt//1hvyEGgGVdT/ybgNlzf4IqA+/lq5XkCrq6kzcAW4Med7hMP2IGkYL+mEHq/coHtuAbT3sOa8YXr24uxytdbPzcH+7WF6vvV6V67gDHBfk1+fr9Os/42Nnb62zgfSMM1brXDem9SrfMFeATXeMMmXBMjAL5pvefrO/1MCfbrC9X3q9Pf3366mVF3vB9Ny6GUUsqtE7K7SSmllGc0SCillHJLg4RSSim3NEgopZRyS4OEUiFARC4WkXF9uO4sETnVH3VSCjRIKOU3IhLRi9MvxpXbqTf3jwTOAjRIKL/RKbBKASLyS6DaWKvDReQ3uFaxRuNapRqDa6Xqvdbxl3GtbI0F/mSMedwqdwB/BeYAtxpjPu3mue7Hld6lBXgXeBF4Haixfi7FtajzW9bzFwPXGGMaRGQx0Igrh89+XAGiFagEvm+MCcvEgCp4NEgoRUfytBeNMVOtldI7gJ/iyvr7bVyLlF4FHjDGfCwiqcaYahEZwFepwe0iYoCFxpglbp4nDVfOpjHGGCMiycaYw9aH/+vGWj0sImnGGLv1+NdAuTHmL9Z56cACY0yriNwHOIwxf/DPO6NOdCdk7ialujLGlIiIXUROwpVR8wvgZFw5mL6wTksA8nGlAf+BiFxilQ+1yu24vtX/+zhPVYOrJfCkiLyOqwXRnQlWcEi2nrdzQrZ/GWO6JgZUyi80SCj1lSeA64FBuDK2zgb+1xjz184niWtHuTnATKsL6CNc3U4Ajcf7ADfGtFiprWfjyuv/Pax8YV0sBi42xmwQketxjT20q+/dy1Kq73TgWqmvvATMw9WCeMf6udFK04yIZFvJ+5KAQ1aAGIMrEaRHrHslGWPexJURdrJ1qA5XWvF2icBBKwPoN45zy67XKeVT2pJQymKMaRKRD4HDVmvgXREZC6xwJePEgSux3NvAd0RkK66Efb1JU50IvCIisbjGOe6wyp8H/iYiP8DVwvgfXJvLVFr/ugsErwFLRWQBOnCt/EAHrpWyWAPW64DLjbU1plInOu1uUgqwFrIVA+9rgFDqK9qSUMpPROQlXNvgdvYTY4zHW0cqFWwaJJRSSrml3U1KKaXc0iChlFLKLQ0SSiml3NIgoZRSyi0NEkoppdzSIKGUUsqt/w9kBLALGYAY1wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "humanist_vols.plot(x='year_start', y='volume_size', kind='line')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEWCAYAAACT7WsrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAi80lEQVR4nO3de5QV1Zn38e8PaEAFAbGDhsZAIiYiKpLW4JhXES+g0aBvVGQyiomRScTRCTNOMJOJrkQTE12aeI0mMEgmXgjRyKsYxAvRzIhyES947VHUJqgIiIpBBZ/3j9qNh6aLc7oP9I3fZ61aXWfXfqr2OX26n6pdu6oUEZiZmTWkQ0s3wMzMWi8nCTMzy+UkYWZmuZwkzMwsl5OEmZnl6tTSDdjadt111+jfv39LN8PMrE1ZuHDhWxFRWb+83SWJ/v37s2DBgpZuhplZmyLplYbK3d1kZma5nCTMzCyXk4SZmeVqd+ckzKx1++ijj6itrWXdunUt3ZTtUteuXamqqqKioqKk+kWThKQpwHHAmxExOJVdBhwPfAj8L/CNiHg7LbsAOBPYAJwbEbNT+Sjgl0BH4DcRcWkqHwDcCvQGFgKnRcSHkroA04AvAiuBMRGxtKR3ZWatVm1tLd27d6d///5IaunmbFcigpUrV1JbW8uAAQNKiimlu2kqMKpe2RxgcETsB7wAXAAgaRBwKrBPirlOUkdJHYFrgWOAQcDYVBfgZ8CVEbEnsJoswZB+rk7lV6Z6ZtbGrVu3jt69eztBtABJ9O7du1FHcUWTREQ8BKyqV3ZvRKxPL+cBVWl+NHBrRHwQES8DNcBBaaqJiJci4kOyI4fRyr4lI4AZKf4m4ISCdd2U5mcAR8jfKrN2wX/KLaexn/3WOHH9TeCeNN8XeK1gWW0qyyvvDbxdkHDqyjdZV1q+JtXfjKTxkhZIWrBixYqy35CZmWXKOnEt6d+B9cDvtk5zmiYibgRuBKiurvYDMszakP6T7t6q61t66Ve26vq2d01OEpLOIDuhfUR88uSiZUC/gmpVqYyc8pVAT0md0tFCYf26ddVK6gT0SPW3K8X+gPwHYbbtLF26lOOOO46nn366pZsCwLHHHsvNN99Mz549m22bTepuSiOV/g34akS8X7BoJnCqpC5p1NJA4DFgPjBQ0gBJnclObs9MyeVB4KQUPw64s2Bd49L8ScAD4cfomdl2bNasWc2aIKCEJCHpFuAR4POSaiWdCVwDdAfmSFos6VcAEbEEmA48A/wJmBARG9JRwjnAbOBZYHqqC/A9YKKkGrJzDpNT+WSgdyqfCEzaKu/YzLZrkyZN4tprr934+qKLLuKyyy7j/PPPZ/Dgwey7777cdtttm8VNnTqVc845Z+Pr4447jrlz5wLQrVs3zj//fPbZZx+OPPJIHnvsMYYPH85nP/tZZs6cCcCGDRs4//zzOfDAA9lvv/244YYbctu4fPlyDj30UIYMGcLgwYN5+OGHgezedG+99Ra/+tWvGDJkCEOGDGHAgAEcfvjhANx7770cfPDBDB06lJNPPpn33nuv7M+rlNFNYyNi94ioiIiqiJgcEXtGRL+IGJKmbxfUvyQiPhcRn4+IewrKZ0XEXmnZJQXlL0XEQWmdJ0fEB6l8XXq9Z1r+Utnv1sy2e2PGjGH69OkbX0+fPp1PfepTLF68mCeeeIL77ruP888/n+XLl5e8zrVr1zJixAiWLFlC9+7d+cEPfsCcOXO44447+OEPfwjA5MmT6dGjB/Pnz2f+/Pn8+te/5uWXX25wfTfffDMjR47c2KYhQ4Zssvzb3/42ixcvZv78+VRVVTFx4kTeeustLr74Yu677z4WLVpEdXU1V1xxReM/oHp8xbWZbVcOOOAA3nzzTf7617+yYsUKevXqxeLFixk7diwdO3akT58+HHbYYcyfP5/99tuvpHV27tyZUaOyy8n23XdfunTpQkVFBfvuuy9Lly4Fsr38J598khkzshH/a9as4cUXX2zworYDDzyQb37zm3z00UeccMIJmyWJOueddx4jRozg+OOP56677uKZZ57hkEMOAeDDDz/k4IMPbuSnszknCTPb7px88snMmDGD119/nTFjxuTu0Rfq1KkTH3/88cbXhRekVVRUbLz+oEOHDnTp0mXj/Pr12Qj/iODqq69m5MiRRbd16KGH8tBDD3H33XdzxhlnMHHiRE4//fRN6kydOpVXXnmFa665ZuP6jzrqKG655Zai628MJwkza1EtMUJvzJgxnHXWWbz11lv8+c9/5pFHHuGGG25g3LhxrFq1ioceeojLLrtsk0TQv39/rrvuOj7++GOWLVvGY4891qhtjhw5kuuvv54RI0ZQUVHBCy+8QN++fdlpp502q/vKK69QVVXFWWedxQcffMCiRYs2SRILFy7k8ssv5+GHH6ZDh+yswbBhw5gwYQI1NTXsueeerF27lmXLlrHXXns18VPKOEmY2XZnn3324d1336Vv377svvvunHjiiTzyyCPsv//+SOLnP/85u+2228auIoBDDjmEAQMGMGjQIPbee2+GDh3aqG1+61vfYunSpQwdOpSIoLKykj/+8Y8N1p07dy6XXXYZFRUVdOvWjWnTpm2y/JprrmHVqlUbT1hXV1fzm9/8hqlTpzJ27Fg++OADAC6++OKyk4Ta26jS6urqaE9PpvN1EtbePPvss+y9994t3YztWkO/A0kLI6K6fl0/T8LMzHK5u8nMrIU89dRTnHbaaZuUdenShUcffbSFWrQ5Jwkza3YR4TvBkg2XXbx4cbNus7GnGNzdZGbNqmvXrqxcubLR/6ysfHUPHeratWvJMT6SMLNmVVVVRW1tLb6tf8uoe3xpqZwkzKxZVVRUlPzoTGt57m4yM7NcThJmZpbLScLMzHL5nMQ25iumzawt85GEmZnlcpIwM7NcThJmZpbLScLMzHI5SZiZWS4nCTMzy+UkYWZmuZwkzMwsl5OEmZnlcpIwM7NcThJmZparaJKQNEXSm5KeLijbRdIcSS+mn71SuSRdJalG0pOShhbEjEv1X5Q0rqD8i5KeSjFXKT3TMG8bZmbWfEo5kpgKjKpXNgm4PyIGAven1wDHAAPTNB64HrJ/+MCFwJeAg4ALC/7pXw+cVRA3qsg2zMysmRRNEhHxELCqXvFo4KY0fxNwQkH5tMjMA3pK2h0YCcyJiFURsRqYA4xKy3aOiHmRPfB2Wr11NbQNMzNrJk09J9EnIpan+deBPmm+L/BaQb3aVLal8toGyre0jc1IGi9pgaQFfm6umdnWU/aJ63QEEFuhLU3eRkTcGBHVEVFdWVm5LZtiZrZdaWqSeCN1FZF+vpnKlwH9CupVpbItlVc1UL6lbZiZWTNpapKYCdSNUBoH3FlQfnoa5TQMWJO6jGYDR0vqlU5YHw3MTsvekTQsjWo6vd66GtqGmZk1k6KPL5V0CzAc2FVSLdkopUuB6ZLOBF4BTknVZwHHAjXA+8A3ACJilaQfA/NTvR9FRN3J8LPJRlDtANyTJrawDTMzayZFk0REjM1ZdEQDdQOYkLOeKcCUBsoXAIMbKF/Z0DbMzKz5+IprMzPL5SRhZma5inY3mZm1Rf0n3b3F5Usv/UoztaRt85GEmZnlcpIwM7NcThJmZpbLScLMzHI5SZiZWS4nCTMzy+UkYWZmuZwkzMwsl5OEmZnlcpIwM7Ncvi2H2TbS1m8L0dbbb1uHjyTMzCyXk4SZmeVykjAzs1xOEmZmlstJwszMcnl0k5ltEx4d1T74SMLMzHI5SZiZWS4nCTMzy+UkYWZmuZwkzMwsV1lJQtJ3JS2R9LSkWyR1lTRA0qOSaiTdJqlzqtslva5Jy/sXrOeCVP68pJEF5aNSWY2kSeW01czMGq/JSUJSX+BcoDoiBgMdgVOBnwFXRsSewGrgzBRyJrA6lV+Z6iFpUIrbBxgFXCepo6SOwLXAMcAgYGyqa2ZmzaTc6yQ6ATtI+gjYEVgOjAD+Pi2/CbgIuB4YneYBZgDXSFIqvzUiPgBellQDHJTq1UTESwCSbk11nymzzdsVj1U3s3I0OUlExDJJlwOvAn8D7gUWAm9HxPpUrRbom+b7Aq+l2PWS1gC9U/m8glUXxrxWr/xLTW2vmbUt3sFpHcrpbupFtmc/APg0sBNZd1GzkzRe0gJJC1asWNESTTAza5fKOXF9JPByRKyIiI+A24FDgJ6S6o5QqoBlaX4Z0A8gLe8BrCwsrxeTV76ZiLgxIqojorqysrKMt2RmZoXKSRKvAsMk7ZjOLRxBdr7gQeCkVGcccGean5lek5Y/EBGRyk9No58GAAOBx4D5wMA0Wqoz2cntmWW018zMGqmccxKPSpoBLALWA48DNwJ3A7dKujiVTU4hk4HfphPTq8j+6RMRSyRNJ0sw64EJEbEBQNI5wGyykVNTImJJU9trZmaNV9bopoi4ELiwXvFLfDI6qbDuOuDknPVcAlzSQPksYFY5bTQzs6bzFddmZpbLScLMzHI5SZiZWS4nCTMzy+UkYWZmuZwkzMwsl5OEmZnlKvcusGbWSvkGebY1+EjCzMxy+UjCtinvzZq1bT6SMDOzXD6SMGulfBRmrYGPJMzMLJeThJmZ5XKSMDOzXE4SZmaWy0nCzMxyOUmYmVkuJwkzM8vlJGFmZrmcJMzMLJeThJmZ5XKSMDOzXE4SZmaWy0nCzMxyOUmYmVmuspKEpJ6SZkh6TtKzkg6WtIukOZJeTD97pbqSdJWkGklPShpasJ5xqf6LksYVlH9R0lMp5ipJKqe9ZmbWOOUeSfwS+FNEfAHYH3gWmATcHxEDgfvTa4BjgIFpGg9cDyBpF+BC4EvAQcCFdYkl1TmrIG5Ume01M7NGaPJDhyT1AA4FzgCIiA+BDyWNBoanajcBc4HvAaOBaRERwLx0FLJ7qjsnIlal9c4BRkmaC+wcEfNS+TTgBOCeprbZti9+aI9Z+cp5Mt0AYAXwn5L2BxYC5wF9ImJ5qvM60CfN9wVeK4ivTWVbKq9toHwzksaTHZ2wxx57NP0d2Wb8j9Zs+1ZOd1MnYChwfUQcAKzlk64lANJRQ5SxjZJExI0RUR0R1ZWVldt6c2Zm241ykkQtUBsRj6bXM8iSxhupG4n08820fBnQryC+KpVtqbyqgXIzM2smTU4SEfE68Jqkz6eiI4BngJlA3QilccCdaX4mcHoa5TQMWJO6pWYDR0vqlU5YHw3MTsvekTQsjWo6vWBdZmbWDMo5JwHwT8DvJHUGXgK+QZZ4pks6E3gFOCXVnQUcC9QA76e6RMQqST8G5qd6P6o7iQ2cDUwFdiA7Ye2T1mZmzaisJBERi4HqBhYd0UDdACbkrGcKMKWB8gXA4HLaaGZmTecrrs3MLJeThJmZ5Sr3nISZWbvka4QyPpIwM7NcThJmZpbLScLMzHL5nISZ2TbQXs5pOEmY5Wgvf+Rm5XB3k5mZ5XKSMDOzXO2+u8ldBmZmTecjCTMzy+UkYWZmuZwkzMwsl5OEmZnlcpIwM7NcThJmZpbLScLMzHK1++skrG3zdS5mLctHEmZmlstJwszMcrm7ycysFWotXa0+kjAzs1xOEmZmlstJwszMcjlJmJlZrrKThKSOkh6XdFd6PUDSo5JqJN0mqXMq75Je16Tl/QvWcUEqf17SyILyUamsRtKkcttqZmaNszWOJM4Dni14/TPgyojYE1gNnJnKzwRWp/IrUz0kDQJOBfYBRgHXpcTTEbgWOAYYBIxNdc3MrJmUlSQkVQFfAX6TXgsYAcxIVW4CTkjzo9Nr0vIjUv3RwK0R8UFEvAzUAAelqSYiXoqID4FbU10zM2sm5R5J/AL4N+Dj9Lo38HZErE+va4G+ab4v8BpAWr4m1d9YXi8mr3wzksZLWiBpwYoVK8p8S2ZmVqfJSULSccCbEbFwK7anSSLixoiojojqysrKlm6OmVm7Uc4V14cAX5V0LNAV2Bn4JdBTUqd0tFAFLEv1lwH9gFpJnYAewMqC8jqFMXnlZma2BVvriu0mH0lExAURURUR/clOPD8QEV8HHgROStXGAXem+ZnpNWn5AxERqfzUNPppADAQeAyYDwxMo6U6p23MbGp7zcys8bbFvZu+B9wq6WLgcWByKp8M/FZSDbCK7J8+EbFE0nTgGWA9MCEiNgBIOgeYDXQEpkTEkm3QXjMzy7FVkkREzAXmpvmXyEYm1a+zDjg5J/4S4JIGymcBs7ZGG83MrPF8xbWZmeXyrcKLaC236zUzawk+kjAzs1xOEmZmlstJwszMcjlJmJlZLicJMzPL5SRhZma5nCTMzCyXk4SZmeVykjAzs1xOEmZmlstJwszMcjlJmJlZLicJMzPL5SRhZma5nCTMzCyXk4SZmeVykjAzs1xOEmZmlstJwszMcjlJmJlZLicJMzPL5SRhZma5nCTMzCyXk4SZmeVqcpKQ1E/Sg5KekbRE0nmpfBdJcyS9mH72SuWSdJWkGklPShpasK5xqf6LksYVlH9R0lMp5ipJKufNmplZ45RzJLEe+JeIGAQMAyZIGgRMAu6PiIHA/ek1wDHAwDSNB66HLKkAFwJfAg4CLqxLLKnOWQVxo8por5mZNVKTk0RELI+IRWn+XeBZoC8wGrgpVbsJOCHNjwamRWYe0FPS7sBIYE5ErIqI1cAcYFRatnNEzIuIAKYVrMvMzJrBVjknIak/cADwKNAnIpanRa8DfdJ8X+C1grDaVLal8toGyhva/nhJCyQtWLFiRXlvxszMNio7SUjqBvwB+OeIeKdwWToCiHK3UUxE3BgR1RFRXVlZua03Z2a23SgrSUiqIEsQv4uI21PxG6mriPTzzVS+DOhXEF6VyrZUXtVAuZmZNZNyRjcJmAw8GxFXFCyaCdSNUBoH3FlQfnoa5TQMWJO6pWYDR0vqlU5YHw3MTsvekTQsbev0gnWZmVkz6FRG7CHAacBTkhansu8DlwLTJZ0JvAKckpbNAo4FaoD3gW8ARMQqST8G5qd6P4qIVWn+bGAqsANwT5rMzKyZNDlJRMRfgLzrFo5ooH4AE3LWNQWY0kD5AmBwU9toZmbl8RXXZmaWy0nCzMxyOUmYmVkuJwkzM8vlJGFmZrmcJMzMLJeThJmZ5XKSMDOzXE4SZmaWy0nCzMxyOUmYmVkuJwkzM8vlJGFmZrmcJMzMLJeThJmZ5XKSMDOzXE4SZmaWy0nCzMxyOUmYmVkuJwkzM8vlJGFmZrmcJMzMLJeThJmZ5XKSMDOzXE4SZmaWy0nCzMxytfokIWmUpOcl1Uia1NLtMTPbnrTqJCGpI3AtcAwwCBgraVDLtsrMbPvRqpMEcBBQExEvRcSHwK3A6BZuk5nZdkMR0dJtyCXpJGBURHwrvT4N+FJEnFOv3nhgfHr5eeD5Lax2V+CtMprl+LYb35bb7njHb+v4z0REZf3CTmVssNWIiBuBG0upK2lBRFQ3dVuOb7vxbbntjnd8S8W39u6mZUC/gtdVqczMzJpBa08S84GBkgZI6gycCsxs4TaZmW03WnV3U0Ssl3QOMBvoCEyJiCVlrrakbinHt8v4ttx2xzu+ReJb9YlrMzNrWa29u8nMzFqQk4SZmeVykjAzs1xOEmZmlstJwswaJKmHpDGSJqZpjKSeW2G9R5VYb2dJn2ugfL8S43eTtFuar5T0fyXt07jWbrK+n5QROyBt/wsl1t9DUtc0L0nfkHS1pO9IKjoqVdJX6+LL1a6ThKRzJfUrXjM3vrOk0yUdmV7/vaRrJE2QVFHiOj4r6V8l/VLSFZK+LWnnRrRhpKTrJc1M0/WSRjX1PRWs94eN2P6ZkvrXK/9mCbGSdIqkk9P8EZKuknS2pCZ99yQ90Ii6u9Z7/Q9p++MlqYT4EyXtkuYrJU2T9JSk2yRVFYm9QtIhpba1gfhdJP1Q0rfSZ/fvku6SdJmkXiWu4/D0fb1T0u2SLpW0Z4mxpwOLgOHAjmk6HFiYlpVjcgnbPwV4DviDpCWSDixYPLWE+H8EHgHmSfoOcBfwFeB2SWeWEH9Vvelq4Oy61yXE/7FgfjTwAHA8cKekM4rFA7P45P/zpantjwIHUtpQ1tuAWkm/lXSsspulNkm7HgIraQ2wFvhf4Bbg9xGxohHxvyO7lmRH4G2gG3A7cATZZzeuSPy5wHHAQ8CxwONpPScCZ0fE3CLxvwD2AqYBtam4CjgdeDEiziv1vTSw7lcjYo8idX4CfJnsn8XxwC8i4uq0bFFEDC0Sfx3wKaAz8A7QhexiyK8AbxRrv6Qn6xeRfR7PA0TEFvcoC9so6QfA/wFuJvud1EbEd4vEPxMRg9L8bcA84PfAkcDXIyJ3j1jSCuAVoJLsD/aWiHh8S9urFz8LeArYGdg7zU8HjgL2j4gt3uhS0k+B3YD7gROAl4EXgLOBn0TE74vEP092n7S365X3Ah6NiL2KxOdd9CpgRETsVCR+MXBMRCyXdBDZ38AFEXGHpMcj4oAi8U8BXwJ2IPs97BkRr6f2PxgRQ4rEvwb8Gbg3tRngcuBfASLipiLxG9so6X/Ivi8vpx2X+yNi/yLxhd+9hcCBEfFxev1ECfGPAyOAk8guQh4M3EH2PfzzlmI3ExHtdiL7p9wBOJps72UF8CdgHNC9hPgn089OwBtAx/RadcuKxD9VELMjMDfN7wE8XkL8CznlIksSxeLfyZneBdaX2P5Oab4n2d7NlXWfbSnx6WcFsBLoXPB5lvL5zQT+C/gC8BmgP/Bamv9MKb//gvlFwE4F7XmqhPjnC+YX1lu2uJRtkyW1/wCWkO0ZXwjsVcK2Fxf8rpc1ZtuFn33B5/3fab4X8HQp3z2gRwPlPUr87q0m2xk4rN40nGwHoeT2p9e7AwuBc4FFJcQvKph/Iu97sYX47sAvyHYqPp3KXioWl7P9x5qw/dlkyRTgD3Xfd6B3/fdTbPvp9W7ps3sEeK3U9xERrfuK660gIsu+9wL3pi6iY4CxZHsFm93xsJ4Oym4HshPZP/kewCqyPeKSupvI/kA3pJhuqVGvlthdtU7SgRExv175gcC6EuLfJtsDeaP+grSnVEyniFgPEBFvSzoeuFHS78mODoqpi/1I0vzIbvdOZFfSf1wsOCK+KulEssPryyNipqSPIuKVErYNsIOkA8h2FDpGxNqC9mwoIX6upB8BP03zJ0a2J3s4sKZY89O2XgB+DPxYWV/6WLJkW6zbp0Pa6+0OdJPUPyKWSupNaZ/9x5J2iYhVwKfJ7lhARKwupasNuARYJOlessQM2c7NUen9FDMPeD8a2GtNRynFvCvpcxHxv6ndyyUNB/4IlHJeISRVRMRHZMmqbttdKaGbPSLeBf5Z0heB30m6u5S4AvtLeocsyXeRtHt6D51Jv4sivgVMk3QR2XdtcTq66glMLCF+k99xRLwOXAVcJekzJb+LFNxuJ7aQsYEdS4j/LvAS2eHquWSH7r8m28O+sIT484AnU8xzwDdSeSXwUAnxQ8n6IZ8hJTrgWbI/wC+WEH8xcFDOsp+VEH8XcFjOej8uIf4eoFsD5btRb++qyHp2Aq4A7iTrJio17sF60+6pvDewoIT4CuAi4NU0fUx2FHYzsEdTv3sltn0s2dHrG8DXgPuAOWQ3uBxfQvyY9L2dk9r+lYLv3s0ltqEXWVfFv6TpVKBXOe+rEe9/f2Bgzu/k6yXE7wFUNFDeFziykW0RMAH4r63wvnoCBzei/t5kz9D5Gln3WYcS44Zvrd9Fez8nsVdke3LlrOPTABHxV2UjO44EXo2Ix0qM34fsF/10RDzXxDbsRvblhqzr4fWmrKcJ290BICL+1sCyvhHRpDvyStqJrOvnzUbG7U/2B/arpmy3YD0dgS4R8X4jYnqQHVmtLLF+t4h4r6ltTOvoSHbua72yES1DyH7/y0uM3wX4LNmDu95uYhv6sOl3b7OjUse333ho5Tf4K1dEvCBpD+CdyLpL+gPVwHMR8XSJq+lE1o8P2V4AQMn/XMj2PO8rY/uQnazuR9ZttRZoVJKQVF0Q/0KpyaouOTQU35gEkbP9tU2Mn1tqXJHtNyZBbIyXVNLnV5cgmvrZp3VskFStbIReXXxJCSLFr5L0WeDw1L1W8vYlDQF+RdbFWku2N10l6W2yQReLisQfAFyf4uu+K42JL9x+/fjvRJFBANs4vtz33xzbLyt+E1vrkKQ1TsAkslEdz5H18T1HdgJ7CTCxDcQfBiwg62pYTdb9899k/yj7Ob71xrfltqf4xWSjm+qXD6O0E6eOb8Pxm8Q0pnJbm8j+Ge9A1gf9LlCZyneitBEeLR3/eEHMAOCONH8UcK/jW298W257qpc7goms+8rx7Ti+cGrX3U3Ahoj4m6QPgb+RDcMkItaWNsCjxeM7xifXdbxKNvSTiJiTrqFwfOuNb8ttB7gnjeiZxiejm/qRXaPzJ8e3+/iN2vuJ66lkwwV3IuuDXk/2AY0gu07ilFYeP4VsKOUDwFfJTjxNlLQj2TjoLV7i7/iWi2/LbS9YxzFkI2s2nvgEZkbErGKxjm/78RvX086TRCfgZLI/lhlkQ8jGku1ZXRtp3Hwrjq8AzgIGAU+QPZlvQxp19Kkocr2A41suvi233axQu04SZtY0acjvBWR7on3IdnTeJLtW5dIoMqTW8W07vlB7v8FfN0k/UnaDsDWSVkiaJ2lcG4t/ul78GY5v3fFtue3JdLJRUYdHxC4R0Rs4nOwq/umOb/fxG7XrIwlJd5Ld1Oo+4BSycwO3Aj8g66P9vuMdvy3i23LbU/zzEfH5xi5zfPuI30Q0YihUW5vY/MZe89PPDmQXtDne8dskvi23PdW7F/g3oE9BWR/ge2QXhzq+HccXTu26uwlYK+nLAJK+SnZzPiK76V8pY1Ad7/imxrfltkN276fewJ8lrZa0iuxCvF3Ijkwc377jP9GYjNLWJmA/4DGyvrm/kG7RTHaTs3Md7/htFd+W216wji+Q3ausW73yUY5v//Eb6zemcnuaSHdkdbzjmzu+LbSd7K7Hz5PdmnspMLpgWSnPc3B8G47fZF3lfNna8kR2J1fHO77Z49tC28luh98tzfcnuw/Ueen1445v3/GFU7u+LYc2f/zlxkVkJ3Ec7/htEt+W2550iHQn28gedjQcmKHsgTWlnNNwfNuO36hdJwmyP4aRZP2yhQT8j+Mdvw3j23LbAd6QNCQiFkN263NJxwFTgH0d3+7jP9GYw462NpHdlvvLOcuKPp3L8Y5vanxbbnuqUwXslrPsEMe37/jCqV1fTGdmZuVp79dJmJlZGZwkzMwsl5OEWSsg6QRJg5oQN1zS322LNpmBk4TZNiOpYyOqn0D27IfGrL8TMBxwkrBtxieuzQBJPwJWRcQv0utLyO6/35nsXjddyJ4TfWFa/keyx0F2BX4ZETem8veAG8huhzAhIv7SwLYuJXta3HqyG7HdDtwFrEnT18ieXjg+bb8GOC0i3lf2tMN1wAFkTxr7O2ADsAL4p4h4eCt+LGZOEmYAkvoDt0fEUEkdgBeB7wNHAP9Idn3BTODnEfGQpF0iYpWyJ73NBw6LiJWSAhgTEQ3es19Sb7LrFL4QESGpZ0S8nf753xURM+rqRcTKNH8x8EZEXJ3q7Up2m4UNki4C3ouIy7fNJ2Pbu/Z+MZ1ZSSK7KnWlpAPILkR7HDgQODrNA3QDBgIPAedKOjGV90vlK8n26v+whU2tITsSmCzpLrIjiIYMTsmhZ9ru7IJlv4+IDY17h2ZN4yRh9onfAGcAu5FdmXoE8NOIuKGwUrrFwZHAwakLaC5ZtxPAui39A4+I9ZIOSus+CTiHrGupvqnACRHxhLKnyQ0vWLbFZ6ObbU0+cW32iTuAUWRHELPT9E1J3QAk9ZX0KaAHsDoliC8Aw0rdQFpXj4iYBXwX2D8tehfoXlC1O7BcUgXw9S2ssn6c2VblIwmzJCI+lPQg8HY6GrhX0t7AI5IA3gP+AfgT8G1Jz5LdjnleIzbTHbhTUley8xwTU/mtwK8lnUt2hPEfwKNkJ6QfJT8R/D+yG7eNxieubRvwiWuzJJ2wXgScHBEvtnR7zFoDdzeZAelCthrgficIs0/4SMJsG5F0BzCgXvH3ImJ2Q/XNWiMnCTMzy+XuJjMzy+UkYWZmuZwkzMwsl5OEmZnlcpIwM7Nc/x/Z6CZgawLEmwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "humanist_vols.plot(x='year_start', y='volume_size', kind='bar')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "humanist_vols['humanities_computing_counts'] = humanist_vols['text'].str.count('Humanities Computing')\n", "humanist_vols['digital_humanities_counts'] = humanist_vols['text'].str.count('Digital Humanities')\n" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABJYElEQVR4nO3deVxVdf748deHXVZFEMEN3AVBVNyXNM2lTM2crKy03WmdJlunaZ3pl9VMTWn11clM2yzLcsrcCkNzRQUURGRTQDZB9p37+f1xL4TKzj33wuXzfDx4AOeecz7ve+7lzbnv8zmfj5BSoiiKolgWK3MHoCiKohifSu6KoigWSCV3RVEUC6SSu6IoigVSyV1RFMUC2Zg7AAAPDw/p6+tr7jAURVE6lGPHjl2UUnrW91i7SO6+vr6Eh4ebOwxFUZQORQhxrqHHVFlGURTFAqnkriiKYoFUclcURbFA7aLmXp/KykpSU1MpKyszdyiKojkHBwd69+6Nra2tuUNRLES7Te6pqam4uLjg6+uLEMLc4SiKZqSU5OTkkJqaip+fn7nDUSxEuy3LlJWV0b17d5XYFYsnhKB79+7qU6piVO02uQMqsSudhnqvK8bWrpO7oihKeyal5JvwFLIK29+nLpXcFUVRWmnf2Ys8tSWKf+2MM3coV1HJvRHJyckMHz7c3GFw4cIFFi9eDEBERATbt2+vfWzbtm288cYb5gpNE3v37uXAgQO1v3/00Uds3LjRjBG13IYNG7hw4YK5w1A0tjo0HoDvI9LIK6kwczSXU8m9A/Dx8WHLli3A1cl9/vz5PPvss+YKTRNXJvcVK1Zw1113mTGillPJ3fIdTc7lSFIuS0L6UF6l4+vwFHOHdJl22xWyrlf+F03MhQKj7tPfx5WXbgxocr3q6mruv/9+Dhw4QK9evfjhhx+YO3cub7/9NiEhIVy8eJGQkBCSk5PZsGED33//PcXFxZw9e5aVK1dSUVHBpk2bsLe3Z/v27bi7u7Nu3TrWrl1LRUUFAwcOZNOmTTg6OrJ8+XJcXV0JDw8nIyODN998k8WLF5OcnMy8efM4fvw4L774IqWlpezfv5/nnnuO0tJSwsPDWb16NdnZ2axYsYLz588D8O677zJp0iR+++03Hn/8cUB/4S4sLAwXF5d6n++qVav47LPPsLKyYu7cubzxxhtERESwYsUKSkpKGDBgAOvXr6dbt25MmzaNkSNHsm/fPoqLi9m4cSP/7//9P06ePMmSJUv4xz/+QXJyMnPmzGH06NEcP36cgIAANm7ciKOjY+2YQh4eHoSHh7Ny5Uo2bNjARx99hLW1NZ999hnvv/8+v/zyC87OzqxcuZJp06Yxbtw4QkNDycvL4+OPP2bKlCmUlJSwfPlyTp06xZAhQ7hw4QJr1qwhJCSk3ue5Y8cOnn/+eaqrq/Hw8OCXX34hNzeXe+65h8TERBwdHVm7di1BQUG8/PLLte0DDB8+nB9//BGAuXPnMnny5MveHz/99BPh4eEsXbqULl26cPDgQV555RW2bduGjY0Ns2bN4u23327xe1ZpX1b/Go+7kx0vzfcnKaeYTYfOce/k/lhbtY+L402euQsh1gshsoQQp+os2yyEiDB8JQshIgzLfYUQpXUe+0jD2E3i7NmzPPzww0RHR9O1a1e+/fbbRtc/deoU3333HUePHuVvf/sbjo6OnDhxggkTJtSWFhYtWsTRo0eJjIxk2LBhfPzxx7Xbp6ens3//fn788cerzsjt7Ox49dVXWbJkCRERESxZsuSyxx9//HGeeOIJjh49yrfffst9990HwNtvv82aNWuIiIhg3759dOnSpd7Yf/75Z3744QcOHz5MZGQkTz/9NAB33XUXq1atIioqisDAQF555ZXLYgoPD2fFihUsWLCANWvWcOrUKTZs2EBOTg4AZ86c4aGHHuL06dO4urrywQcfNHj8fH19WbFiBU888QQRERFMmTLlqnWqqqo4cuQI7777bm0sH3zwAd26dSMmJobXXnuNY8eONdhGdnY2999/P99++y2RkZF88803ALz00kuMHDmSqKgoXn/99WZ9Wqjv/bF48WJCQkL4/PPPiYiIoKSkhK1btxIdHU1UVBQvvPBCk/tV2reTqfn8FpfNvZP9cLSzYflEX1JyS9l7JsvcodVqzpn7BmA1UFv0lFLWZhUhxL+A/DrrJ0gpg40UH0CzzrC14ufnR3BwMACjR48mOTm50fWnT5+Oi4sLLi4uuLm5ceONNwIQGBhIVFQUoP8H8MILL5CXl0dRURGzZ8+u3X7hwoVYWVnh7+9PZmZmi2Lds2cPMTExtb8XFBRQVFTEpEmT+Otf/8rSpUtZtGgRvXv3bnD7u+++G0dHRwDc3d3Jz88nLy+Pa665BoBly5bxpz/9qXab+fPn1z6/gIAAvL29Aejfvz8pKSl07dqVPn36MGnSJADuuOMO3nvvvdqz4NZYtGgRcPnrsX///tpPJ8OHDycoKKjB7Q8dOsTUqVNrbxhyd3ev3UfNP+9rr72WnJwcCgoa/8TYnPeHm5sbDg4O3HvvvcybN4958+Y1+7kq7dOa0HhcHGy4c0I/AK7z96KnqwOfHjzHjGFeZo5Or8kzdyllGJBb32NC3zn3FuBLI8fVbtjb29f+bG1tTVVVFTY2Nuh0OoCrbjypu76VlVXt71ZWVlRVVQGwfPlyVq9ezcmTJ3nppZcu20fd7aWULYpVp9Nx6NAhIiIiiIiIIC0tDWdnZ5599ln++9//UlpayqRJk4iNjW3RfhtT9/ld+dxrnu+Vfbhrfm/sODanzZrXQ2t14wQafL0aisfGxoYjR46wePFifvzxR+bMmaNtwIqmzmYWsiM6g2UTfHF10A8XYWttxdJxfQmLyyYxu8jMEeq19YLqFCBTSnm2zjI/IcQJIcRvQoirP1MbCCEeEEKECyHCs7Oz2xiGafn6+tZ+7K+50NkShYWFeHt7U1lZyeeff96ibV1cXCgsLKz3sVmzZvH+++/X/h4REQFAQkICgYGBPPPMM4wZM6bB5H7dddfxySefUFJSAkBubi5ubm5069aNffv2AbBp06bas/jmOn/+PAcPHgTgiy++YPLkycDlx7Fuuaux59iQSZMm8fXXXwMQExPDyZMnG1x3/PjxhIWFkZSUBOifJ8CUKVNqX4+9e/fi4eGBq6srvr6+HD9+HIDjx4/XbteYus+hqKiI/Px8rr/+et555x0iIyNb9NyU9uWDvQl0sbXmnsmXDxVx69i+2FoLNh1qcIh1k2prcr+Ny8/a04G+UsqRwF+BL4QQrvVtKKVcK6UMkVKGeHrWO5FIu7Vy5Uo+/PBDRo4cycWLF1u8/Wuvvca4ceOYNGkSQ4cObdG206dPJyYmhuDgYDZv3nzZY++99x7h4eEEBQXh7+/PRx/pL3m8++67taUKW1tb5s6dW+++58yZw/z58wkJCSE4OLj2ot+nn37KU089RVBQEBEREbz44ostinnIkCGsWbOGYcOGcenSJf785z8D+hr3448/TkhICNbW1rXr33jjjWzdupXg4ODafypNeeihh8jOzsbf358XXniBgIAA3Nzc6l3X09OTtWvXsmjRIkaMGFF77eLll1/m2LFjBAUF8eyzz/Lpp58CcPPNN5Obm0tAQACrV69m8ODBTcazfPlyVqxYQXBwMIWFhcybN4+goCAmT57Mv//972Y9J6X9OZ9TwrbIC9w+ri/uTnaXPebpYs8Ngd5sCU+luFz7T5RNklI2+QX4AqeuWGYDZAK9G9luLxDS1P5Hjx4trxQTE3PVMqXjSUpKkgEBAZq3U1VVJUtLS6WUUsbHx0tfX19ZXl6uebvGpN7z7d+z30bJQc9vlxn5pfU+fuxcruz3zI9y48Fkk8QDhMsG8mpbukLOBGKllKk1C4QQnkCulLJaCNEfGAQktqENRWmWkpISpk+fTmVlJVJKPvjgA+zs7JreUFGaKSO/jG+PpfKnkN54uTrUu87IPl0J7OXGxgPJ3DGur1nHDGoyuQshvgSmAR5CiFTgJSnlx8CtXH0hdSrwqhCiEtABK6SU9V6MVczn5MmT3HnnnZcts7e35/Dhw0Zvy9fXl1OnTjW9Yhu5uLjUOw/vuHHjKC8vv2zZpk2bCAwM1DwmxbKsDUukWkpWXDOgwXWEENw1oR9PbYniYGIOEwd4mDDCyzWZ3KWUtzWwfHk9y74FGu8IrphdYGBg7cVWS6fFPyyl88kpKueLI+dYEOxDH3fHRte9cYQPr28/zcYD58ya3NXwA4qiKE1Y/3sS5VU6Hpo2sMl1HWytWTKmL7tiMkjLKzVBdPVTyV1RFKUR+aWVbDxwjrnDezKwh3OztrljfF8Avjhsvm6RKrkriqI0YtPBZArLq5p11l6jdzdHZg7z4ssjKZRVVmsYXcNUclcURWlASUUVH+9PYvoQT4b3qv++iYYsm+hLbnEF20+maxRd41Ryb4GXX36Zt99+mxdffJE9e/Y0um7dcda///77y8Z8aWr/DZk2bVq9PULM4b777qt9Tq+//vplj02cONEcIbVKc18bpXP64vB5LpVU8si1zT9rrzFxQHcGeDrx6YFk4wfWDCq5t8Krr77KzJkzG12n7jjrlphA/vvf/+Lv7w9cndzrjsXe3lnia6MYR3lVNev2JTK+vzuj+7m3eHshBMsm+hKZmk9ESp7xA2xCx0juPz8Ln9xg3K+fmzfBxT//+U8GDx7M5MmTOXPmDKC/tbxmTJnt27czdOhQRo8ezWOPPVY74t+GDRt45JFHOHDgANu2beOpp54iODiYhIQE1q1bx5gxYxgxYgQ333xz7VguzfHNN98wduxYBg8eXHtrfk1bNebNm8fevXsBcHZ25qmnniIgIICZM2dy5MgRpk2bRv/+/dm2bRugn3FqypQpjBo1ilGjRtUm57179zJt2jQWL17M0KFDWbp0ae1gZjWfIp599llKS0sJDg5m6dKltW3WeOuttxgzZgxBQUG89NJLABQXF3PDDTcwYsQIhg8fftUwCnUdPXqUiRMnMmLECMaOHUthYSFlZWXcfffdBAYGMnLkSEJDQ5t1HP72t78xYsQIxo8fT2ZmZr2vzXvvvYe/vz9BQUHceuutzX5dFMuz5VgqmQXlPDJ9UKv3sWhUb5ztbdhohrP3jpHczeTYsWN89dVXtbMfHT169LLHy8rKePDBB/n55585duwY9Q2ANnHiRObPn89bb71FREQEAwYMaHQ896bUN5Z5Y4qLi7n22muJjo7GxcWFF154gd27d7N169baMWJ69OjB7t27OX78OJs3b+axxx6r3f7EiRO8++67xMTEkJiYyO+//37Z/t944w26dOlCRETEVYOg7dq1i7Nnz3LkyBEiIiI4duwYYWFh7NixAx8fHyIjIzl16lSDoyRWVFSwZMkS/vOf/xAZGcmePXvo0qULa9asQQjByZMn+fLLL1m2bFmTo0oWFxczfvx4IiMjmTp1KuvWrav3tXnjjTc4ceIEUVFRtWPzKJ1PVbWOj35LYESfrkwa2L3V+3G2t+HmUb34MSqdi0XlTW9gRB1iJibmmmeO0H379nHTTTfVjm9eM3Z5jdjYWPr37187Lvhtt93G2rVrm9xvY+O5N6W+scwbY2dnV5s8AwMDsbe3x9bWlsDAwNrtKysreeSRR4iIiMDa2pq4uD8m+x07dmzt+O/BwcEkJyfXjurYlF27drFr1y5GjhwJ6EdHPHv2LFOmTOHJJ5/kmWeeYd68efVOyAH6ST68vb0ZM2YMAK6u+jHo9u/fz6OPPgrA0KFD6dev32UxN3Qcaj5VjR49mt27d9e7XlBQEEuXLmXhwoUsXLiwWc9TsTzbIi+QklvKi/MC2jyEwJ0TfPn04Dk2H03h4ektr923ljpzN4PGxnNvSn1jmTc23ritrW3tm7Oh8eXfeecdvLy8iIyMJDw8nIqKPyb6bc545Q2RUvLcc8/Vji8fHx/Pvffey+DBgzl+/DiBgYG88MILvPrqq83eZ2Oaexwaex4//fQTDz/8MMePH2fMmDEmGS9eaV90OskHexMY2tOFGUN7tHl/A3s4M3mgB58dOkdVta7pDYxEJfdGTJ06le+//57S0lIKCwv53//+d9njQ4YMITExsfYMuKHa8ZXjk7dlPPf6+Pr6EhERgU6nIyUlhSNHjrRo+/z8fLy9vbGysmLTpk1UV7esX66trS2VlZVXLZ89ezbr16+nqEg/eUFaWhpZWVlcuHABR0dH7rjjDp566qnasdKvNGTIENLT02vLYYWFhVRVVV027npcXBznz59nyJAhrToOdV+bmu2mT5/OqlWryM/Pr41d6Tx2RmcQn1XEQ9MHYmWk+VDvmtCP9Pwy9pxu2exqbdExyjJmMmrUKJYsWcKIESPo0aNHbXmgRpcuXfjggw+YM2cOTk5OVz1e49Zbb+X+++/nvffeY8uWLbXjuXt6ejJu3LgWT0xxpUmTJuHn54e/vz/Dhg1j1KhRLdr+oYce4uabb2bjxo21z6UlHnjgAYKCghg1atRl/6xmzZrF6dOnmTBhAqC/qPnZZ58RHx/PU089hZWVFba2tnz44Yf17tfOzo7Nmzfz6KOPUlpaSpcuXdizZw8PPfQQf/7znwkMDMTGxoYNGzZgb2/fquNQ97X56quvuPfee8nPz0dKyWOPPUbXrl1bdCyUjk1KyerQePw8nLgh0Nto+50xzIteXbvw6YFzzBluvP02RtT0fjCnkJAQeWX/7dOnTzNs2DAzRdR8RUVFODs7I6Xk4YcfZtCgQTzxxBPmDkvpgDrKe96ShZ7J4u5PjvLmzUHcMqaPUff90W8JvPFzLLuemMpgLxej7FMIcUxKGVLfY6os00br1q0jODiYgIAA8vPzefDBB80dkqIorSClZM2v8fi4ObBwZC+j739JSB/sbaxMdlOTKsu00RNPPGH0M/WHH374qi6Hjz/+OHfffbdR22lPbrrppqvmJl21alWLehIpSlscTsol/NwlXpkfgJ2N8c97uznZMX+ED98dT+PpOUNx62Jr9DbqatfJXUpp1plMzGXNmjXmDsHktm7dau4QzKo9lEc7uzWh8Xg427PEyOWYupZN9OWbY6l8eyz1qgm2ja3dlmUcHBzIyclRb3rF4kkpycnJwcGh/qnbTCkjv4yx/9xDeHLnmkAtMiWPfWcvct8UPxxsrZveoJWG93JjVN+ubDp0Dp1O29zWbs/ce/fuTWpqar13fSqKpXFwcKi9WcycfjqZTlZhOWFnLxLi2/LxVDqq1aHxuHWx5Y7x/TRva9lEXx7/KoJ98Re5ZrCnZu00Zw7V9cA8IEtKOdyw7GXgfqAm8z4vpdxueOw54F6gGnhMSrmzNYHZ2trW3vmpKIpp7IzOACDmQoGZIzGd+KxCdsdk8viMQTjba3++O3e4N685n2bjgWRNk3tzyjIbgPoG/3hHShls+KpJ7P7oJ84OMGzzgRBCu884iqIYTU5ROeHJuQgBMRfyzR2Oyfx8Uv8PzRRn7QB2NlbcPrYPv57J4nxO8wcNbKkmk7uUMgxobgFuAfCVlLJcSpkExANj2xCfoigmsud0JjoJNwb5cCG/jEvFFU1vZAFCz2Qxorcbni72Ta9sJLeP64eVEHym4TR8bbmg+ogQIkoIsV4I0c2wrBeQUmedVMOyqwghHhBChAshwlVdXVHMb2d0Jr26dmHxaH3t/3S65ZdmcosrOJGSx7QhbR9DpiV6ujkwJ6Anm4+mUFqhzTR8rU3uHwIDgGAgHfhXS3cgpVwrpQyRUoZ4empXd1IUpWlF5VXsP3uR2QE9CfDRj74Z0wmSe1hcNlLCtUYYIKyllk30Jb+0kh8i0jTZf6uSu5QyU0pZLaXUAev4o/SSBtTtJNrbsExRlHZs75ksKqp1zA7woruzPT1dHTrFRdXQM1l0d7IjsIXzoxrDGN9uDO3pwt4z2lQuWnVpWAjhLaWsmfX1JuCU4edtwBdCiH8DPsAgoGVDFCqKYnI7ozPp7mRX2/3R38eVaAtP7tU6yW9x2Vw7tIfRRn9sCSEEG+8Zq1mtvzldIb8EpgEeQohU4CVgmhAiGJBAMvAggJQyWgjxNRADVAEPSym1KSgpimIU5VXVhMZmcUOgN9aGJOfv7cpvcdmUVVZrelOPOUWk5JFXUmmWkkyNHq7a3bjWZHKXUt5Wz+IG54WTUv4T+GdbglIUxXQOJORQVF7F7OFetcv8fVyp1knOZhYR2Nv0JQtTCI3NwtpKMGWgZV7za7fDDyiKYhq7ojNwsrNm4gCP2mX+3jUXVS23v3vomSxG9+2Gm6O2A3iZi0ruitKJVesku2MymTa0x2Xll77ujjjb21jsRdXMgjKiLxQw3YwlGa2p5K4ondixc5e4WFTBnICely23shIM83ax2Iuqe89kATB9qGWWZEAld0Xp1HZGZ2BnbcW0IVcnOX9vV06nF2g+eqE5hMZm4+3mwBAjzYjUHqnkriidlJSSndEZTBrYHReHq+vO/j6uFFdUcz5Xu/FPzKGiSsf++ItMH9rDoueLUMldUTqpmPQCUi+VMvuKkkwNf2+32vUsSXhyLkXlVUw38ZADpqaSu6J0UjujM7ESMNPfq97HB3k5Y2MlLO6iauiZLOysrZg4oLu5Q9GUSu6K0kntis4gpJ87Hs713yHpYGvNwB7ORFvY8L+hZ7IZ198dJxOM3W5OKrkrSid0LqeY2IxCZgXUf9Zew9/b1aLKMim5JcRnFVl8SQZUcleUTqlmxqWG6u01/H1cySwo52JRuSnC0lxobRdIldwVRbFAO6Mz8fd2pY+7Y6Pr1dypailju4fGZuHb3RE/Dydzh6I5ldwVpZPJKizj+PlLTZ61g/7MHbCIm5lKK6o5kJDTKc7aQSV3Rel0dsdkIiWXDRTWkK6OdvTq2sUieswcSsyhvErXKertoJK7onQ6O6Mz6dfdsdl3Zw6zkIuqoWey6GJrzVg/d3OHYhIquStKJ1JQVsnBhIvMCejZ7Lsz/X1cScwu0myuT1OQUvJrbBaTBnpY7Pj0V1LJXVE6kdDYLCqrJbOaUW+v4e/tik7CmcxCDSPTVkJ2EamXSi16oLArqeSuKJ3IzugMerjYM7JP12ZvE1B7UbXj3swUGqufp3RaJ6m3g0ruitJplFVWs/dMNtf5e7VoztDe3brg4tCxx3YPPZPF0J4u9OraxdyhmEyTyV0IsV4IkSWEOFVn2VtCiFghRJQQYqsQoqthua8QolQIEWH4+kjD2BVFaYF9Zy9SUlHdrC6QdQkhOvSdqoVllRxJyu1UZ+3QvDP3DcCcK5btBoZLKYOAOOC5Oo8lSCmDDV8rjBOmoihttTM6AxcHG8b3b/mAWf4+rsSmF1LdAcd2/z3+IlU6yfR6xqy3ZE0mdyllGJB7xbJdUsoqw6+HgN4axKYoipFUVev45XQmM4b2wM6m5dVYf29XSiurSc4p1iA6bYXGZuPiYMOoft20aSDjFFS0vzHvjVFzvwf4uc7vfkKIE0KI34QQUxraSAjxgBAiXAgRnp2dbYQwFEVpyJHkXC6VVLa4JFMjwEc/tntHu1NVSknomSymDvbE1lqDS4yXzsH/TYEvboGqCuPvvw3a9GyFEH8DqoDPDYvSgb5SypHAX4EvhBCu9W0rpVwrpQyRUoZ4enauj0uKYmq7ojOxt7HimlaWJgb2cMbWuuON7R59oYCswnLt7kqN2wlSB8n7YNujINtP2arVyV0IsRyYByyVUv+MpJTlUsocw8/HgARgsBHiVBSllaSU7IrOYMogTxztWjeGuZ2NFYN6uHS4i6o1E2FfM1ijE8i4HdB9IEx/AaK+gtDXtWmnFVqV3IUQc4CngflSypI6yz2FENaGn/sDg4BEYwSqKErrnEzL50J+GbObGLu9Kf4+rh3uzP3X2CxG9HbD06X+CUnapLxIf8Y+eA5MXQkj74SwN+H4JuO31QrN6Qr5JXAQGCKESBVC3AusBlyA3Vd0eZwKRAkhIoAtwAopZW59+1UUxTR2RmdgbSWYOayNyd3blYtF5WQVlhkpMm3lFldwIiVPuy6QiXuhugIGzwYhYN47MOBa+PEvkPCrNm22QJOf0aSUt9Wz+OMG1v0W+LatQSmKYjw7ozMZ5+dONye7Nu0noM7wvz2GOBgjNE3tO5uNlBpOzBG3A+xdoe8E/e/WtvCnT+GTubD5LrhnB/Qcrk3bzaDuUFUUC5aQXUR8VlGre8nUNcyQ3DtKaebX2Cy6O9kR1MvN+DvX6eDsLhg4Q5/Uazi4wu1fg70LfP4nKLhg/LabSSV3RbFgNdPpNTVXanO4OtjSx71Lh7ioWq2T/BaXzTVDPFs01EKzpUdAUaa+3n4lt16w9GsoL4TPb4Ey8xwvldwVxYLtjM5kRG83vN2MM6aKv7crpzvAmXtESh55JZXadYE8uwsQMHBm/Y/3DIRbNkBWDHyzHKortYmjESq5K4qFysgvIzIlr0XD+zbF39uNpJxiisurml7ZjEJjs7C2EkwdpGEXyN5jwMmj4XUGzoQb34WEX+Cnv5q8D7xK7opioXbF6Esyxqi31wjwcUVKiM1o32fvoWeyGN23G26Otk2v3FKFGXDhhL6XTFNG3QVTVsLxjbDvX8aPpREquSuKhdoZncEATycG9nA22j79O8BF1cyCMqIvFDBNq4k5zu7Sf6+v3l6fa1+AwFvg19cg6httYqqHSu6KYoEuFVdwKDHXqGftAN5uDnR1tG3XF1Vr7krVdMgB197gFdC89YWABavBdwr88BAk79cmriuo5K4oFuiX2CyqddLoyb12bPd2fOYeGpuNt5sDQ3s2bwLwFqksg4TQP25cai4be1iyCbr5wVe3Q/YZ48d2BZXcFcUC7YzOwNvNgaDexu/j7e/tSmxGIVXVOqPvu60qqnTsj7/ItCE9mj0BeIuc2w+Vxc0vydTVpRss/Qas7eDzxVCUZfz46lDJXVEsTElFFWFx2czy99IkwQX0cqW8SkfixfY3tnt4ci5F5VXaTcwRtxNsuoBfg6OZN65bP7h9MxRf1A8TXKHdMVTJXVEshJSSY+dyeezLCMqrdMwebtySTA1/b/2ngfZYmgk9k4WdtRWTBjbSRbG1pNR3gew/DWzbcN9Ar9Fw88eQHglb7gVdtdFCrEsld0Xp4Mqrqvn2WCrzV//OzR8e5HBSDo9MH8h4v5ZPp9cc/T2dsLOxapcXVUPPZDOuvztO9q0b2rhR2bGQd755XSCbMvR6mLMK4n6GHc+2fX/10OAIKIpiClkFZXx2+DxfHD7HxaIKBvZw5h8Lh3PTyF7aJDcDW2srhni5tLsz95TcEuKzirhtbF9tGojbqf9ujOQOMO4BKLwAnsOMs78rqOSuKB1MREoeG35P4qeT6VTpJNcO6cHySb5MHuihzUXEevh7u7L7dCZSSpO12ZRQQxfIazUbBXKnflgBVx/j7XPmy8bb1xVUcleUDqCiSsfPp9L55PdkIlLycLa34Y7x/Vg2wRdfDyeTxxPQy5XN4SlkFJQZbdyatgqNzcK3uyN+WhyPklxIOQRTnjT+vjWikruitGPZheV8eeQ8nx06R1ZhOf09nHhlfgA3j+6Ns4all6b4e/9xp2p7SO5lldUcSMjRriQT/4t+rtTWdIE0E5XcFaUdSskt4Z09cfwYmU5FtY5rBnuyarEv1wzSaAjbFhpaJ7nPaOMMT8ZwMCGH8iqdhiWZHeDoAT6jtNm/BlRyV5R2pryqmns/PUrqpVJuG9uHuyb6MsDTeOPDGIOzvQ2+3R3bTY+Zzw+fx8XehrF+7sbfeXUVxO+GofPAquN0MFTJXVHamfd/iScus4j1y0O4dqj5z4ob4u/jSnQ76DETnpzLntOZrJw1GAdba+M3kHIYyvKN10vGRJr1b0gIsV4IkSWEOFVnmbsQYrcQ4qzhezfDciGEeE8IES+EiBJCdJzPMYpiZqfS8vnwtwRuHtW7XSd2gAAfN87llFBQZvqJKGpIKVm1IxZPF3vumeynTSNxO8DKFvpP12b/GmnuZ4wNwJVXEp4FfpFSDgJ+MfwOMBcYZPh6APiw7WEqiuWrqNKx8ptIujvZ8eI8f3OH06Sai6qx6YVmi+HX2CyOJl/isRmDcLTTqBARtxN8J+nnR+1AmpXcpZRhQO4VixcAnxp+/hRYWGf5Rql3COgqhPA2QqyKYtFWh8YTm1HI6zcFajPJhJH9MbZ7vlnar9ZJ3txxBt/ujtw6po82jeQmwcUzHaqXTI22XB3wklKmG37OAGo+Q/YCUuqsl2pYdhkhxANCiHAhRHh2dnYbwlAUbVRU6bjhvX18vD9J87ZOpeXzQWg8i0b2YqZ/+y7H1OjhYk93JzuzXVTdeiKNM5mFrJw9BFtrjS501k7M0bHq7WCkC6pSSimEaNEEgVLKtcBagJCQENNOLqgozRCVmkf0hQKiL8TQw8WeG0cY8c7EOiqqdDy1JYpuTna8eGP7L8fUEELg7+NqluReVlnNO7vjCOzlxvXDNSwMxO0Aj8Hg3l+7NjTSln93mTXlFsP3msGJ04C6n5F6G5YpSodyMCEHgBF9uvLk15EcTb6yMmkcH+yN53R6Aa/fFEhXRztN2tCKv48rcRlFVJp4bPfPDp0jLa+UZ+YM1a7ff3mhftakQbO02b/G2pLctwHLDD8vA36os/wuQ6+Z8UB+nfKNonQYBxNzGNrThQ3Lx9C7Wxfu3xhOQnaRUduIuVDA6l/jWRDsw3UdpBxTl7+3KxXVOuKzjHtcGlNQVsma0HimDPJg8iANhvatkbgXqis6ZL0dmt8V8kvgIDBECJEqhLgXeAO4TghxFphp+B1gO5AIxAPrgIeMHrWiaKy8qppj5y4xYUB3ujnZseHusVgLwd2fHOViUblR2qis1vHUlki6Otry8o3NnI+znQkww4TZ68ISuVRSyTNzhmrbUNwOsHeDvuO1bUcjze0tc5uU0ltKaSul7C2l/FhKmSOlnCGlHCSlnCmlzDWsK6WUD0spB0gpA6WU4do+BUUxvhPn8yiv0jGhv35M9L7dHfnvshCyCsu479NwSivaPsHCR3sTiL5QwD8WBtLNqWOVY2r4eTjjYGu6sd2zCsr4774k5gV5M7yX8acQrKXTQdwuGDgDrNt/z6X6dJx7aRXFhA4m5CAEjKsz4cXIvt34z60jiUzN4y+bT1Cta30/gNiMAt779Sw3jvBhjkYzJpmCtZVgSE/TTZj93q9nqazWsXLWEG0bSj8BxVkdtiQDKrkrSr0OJuYQ4ON6VX/z2QE9+fsN/uyMzuSfP51u1b4rq/U3K7k62PLK/I5ZjqkrwMeV6Av5SKltp7fki8V8dSSFW8f20X6Y47idIKxg4Ext29GQSu6KcoWyymoizufVlmSudM9kP+6e5Mv635P45PeW94FfG5bIqbQC/rFwOO4dtBxTl7+3KwVlVaTllWraztu7zmBrbcVjMwZp2g6gr7f3HgtO2kxVaAoquSvKFY6fu0RFtY7xDSR3gBdu8Gd2gBev/hjDzuiMZu/7TEYh7+6J44Ygb+YGWsaN2/4muKh6MjWfH6PSuW+KHz1cHDRrB4CCdP3k1R3wxqW6VHJXlCscTMzBSsCYRoaPtbYSvLtkJCN6d+Xxr04QkZLX5H6rDL1jXBxsedUCyjE1hvZ0QQg0vai6akcs3RxteWCqCW4mqr0rtePW20Eld0W5ysGEHAJ7ueHq0HgviS521vx3WQg9XBy4d8NRzueUNLr+un1JRKXm89qC4XR3tjdmyGblaGeDn4eTZmfu+89eZH/8RR6ePhCXJl4To4jbCW59oYc2E1ebikruilJHSUUVkal5jB/QvFqrh7M9n9w9hmopWb7hCHklFfWudzazkHd2x3F9YE9uCLKMckxdAT5umoztrtPph/Tt1bULd4zvZ/T9X6WyDBJD9SWZdjLxd2up5K4odYQnX6KyWjZ4MbU+AzydWXtnCKm5pTyw8RhllZf3ga+q1rFySxRO9ta8umC4sUNuF/y9XUnLKyW/xLhju28/lc7JtHz+ep1GE3FcKXk/VJZ0+Ho7qOSuKJc5mJiDjZVgjG/Lpmsb6+fOv24ZwZHkXJ7aEoWuTh/4j/cnEZmSx6sLhuNhQeWYumovqhqx7l5ZrePtnWcY4uXCwpFXDSyrjbgdYOsIvlNM056GVHJXlDoOJeYQ1NsNJ/uWD5h64wgfnpkzlP9FXuCtXWcAiM8q4l+745gT0JN5FliOqVEzcYcxk/tXR1NIzinh6TlDsDbFpOBS6uvt/aeBrcY9ckxAzaGqKAZF5VVEpeaz4prW98hYcU1/Ui6V8OHeBHy6duG746k42lnz2sLhiA5ew22Mp4s9ni72RruoWlJRxXu/nGWMbzeuHdrDKPtsUtZpyD8PU580TXsaU8ldUQyOJudSrZON9m9vihCCV+cHkJ5Xyt+/1085/J9bg/F0scxyTF01d6oaw/r9SWQXlvPRHaNM908xbof+ewcd4vdKqiyjKAaHEnKwtRaE9GtZvf1KNtZWrL59FGN8u3HTyF7M12iSj/bG39uV+KwiyqvaNqjapeIK/u+3RK7z92J0G1+LFonbCd4jwNUyXi915q4oBgcTcwju05Uudm3vleFkb8PXD04AsOhyTF3+Pq5U6SRnM4vaNGLjmtB4iiuqeHq2xoOD1VWSC6lHYOpTpmtTY+rMXVHQTwBxKi2/RV0gmyKE6DSJHf64qHrs3KXLegu1ROqlEjYePMfNo3ozyMvFmOE1Ln4PSJ1FdIGsoc7cOxgpJWWVOqOcXSp/OJKYi07S7JuXlKv5dnfC1cGGl7ZF8/r20/Tr7ohvdyf8PJzo190JXw9H/Dyc8HJxaHBqvHd2nwUBT1w32LTBx+0Apx7gPdK07WpIJfcOIvVSCT9EXOD7E2mcyylh5xNT8dN62NNO5FBiDnY2Vozq283coXRYVlaCb1ZMJPxcLskXi0nOKSHpYjF747KpqPpjjlUHWyv6ueuTva+HE77d9V8A351I5b7Jfvh07WK6wKsr9Wfuw24EK8spZqjk3o7ll1Sy/VQ6W0+kcSRJPznzqL5dqajWsf1kOg9PH2jmCC3HwcQcRvXtapq7IC3YkJ4uDOl5eTmlWidJzy/lnCHZ6xN/MQnZxYTGZlNRZ3JtFwcbHppm4vd1yhEoy4dBllOSgTYkdyHEEGBznUX9gReBrsD9QLZh+fNSyu2tbaezKa+qJjQ2i60n0mrf+P09nVg5azALgnvRx92RBWt+Z2d0hkruRpJXUkFMegGPm2Kc8E7I2krQu5sjvbs5Mmng5RNaV+skF/JKSc7RJ/3BXi6mn3Iwca9+Yo7+15i2XY21OrlLKc8AwQBCCGsgDdgK3A28I6V82xgBdgY6neRoci7fR6TxU1Q6BWVVeDjbc8f4ftw0shfDe7ledmFudoAXb+44w4W8UtN+fLVQh5NykRKjXkxVmsfaStDH3ZE+7o5MGeRpniCSwsBnJDhoOCerGRirLDMDSJBSnutMvQPaKi6zkO9PpPFDxAXS8kpxtLNmTkBPFo7sxcQB3bGxrr/+NzugJ2/uOMOu6AyWT/IzcdSW52BCDvY2VgT37WruUBRTKy+CtHCY+Ki5IzE6YyX3W4Ev6/z+iBDiLiAceFJKeenKDYQQDwAPAPTt29dIYXQMBxNyeO3HGGLSC7C2Ekwd5MHTc4Zwnb8XjnZNvyQDPJ0Z2MOZndGZKrkbwaHEHEJ8u2Fvo+rtnc75Q6CrAr+p5o7E6Np8aVgIYQfMB74xLPoQGIC+ZJMO/Ku+7aSUa6WUIVLKEE9PM30cM4PzOSU8uCmc4ooqXr7Rn8PPz+CTu8eyILhXsxJ7jdkBXhxJzuVScf3jhyvNk1NUTmxGoSrJdFZJv4GVLfQZb+5IjM4Y/X7mAsellJkAUspMKWW1lFIHrAPGGqENi1BWWc2fPz8GwGf3jmP5JL9WDwE7J8Cbap1kz+lMY4bY6Rw29EKaoPq3d05JYdBnLNg5mjsSozNGcr+NOiUZIUTdcU1vAk4ZoQ2L8NIP0URfKODdW4Pp4962N9PwXq706tqFndEqubfFocQcHO2sCerd1dyhKKZWekk/EbYFlmSgjcldCOEEXAd8V2fxm0KIk0KIKGA68ERb2rAUm4+eZ3N4Co9eO5Brh3q1eX9CCK7z9yLsbDbF5VVGiLBzOpiQQ4ivO7YNXLxWLFjy74BUyb0+UspiKWV3KWV+nWV3SikDpZRBUsr5Usr0tofZsZ1Ky+fvP0QzeaAHf5lpvNuqZwf0pKJKx29x2U2vrFwlu7Ccs1lFjO9vwpEHlfYjKQxsukCvEHNHogl1uqKxvJIKVnx2jO5Odvzn1mCjzigzxrcb3Rxt2RmdYbR9diaHEnMA1b+900oKg34TwMbEN02ZiEruGtLpJH/9OpLMgjI+WDqK7kaeP9PG2oqZw7z4NTbrsrE7lOY5mJiDs70NgW0YnlbpoIqyIPu0xZZkQCV3Ta0JjefX2CxenOfPSI0GpJod0JPCsioOGs5CleY7lJDDGN9uDd4spliwpDD9dz/LGnKgLvWu1si+s9n8e08cC4N9uGN8P83amTzIA0c7a1WaaaHMgjISLxarLpCdVVIY2LvpZ16yUCq5ayAtr5THvjzBoB7OvL4oUNMJGxxsrZk2xJPdMZmtniChM/qj3u7RxJqKRUoKA9/JYGW5dyWr5G5k5VXVPPT5cSqrJR/eMbpFd5221uyAnmQXlnMi5apRHpQGHEzIwcXBBn8fV3OHopha3nm4lGTR9XZQyd3o/vnTaSJT8nhrcRADPJ1N0ub0oT2wtRbqhqYWOJiYwzg/d6P2XlI6iKR9+u8quSvN9f2JNDYePMf9U/yYG+jd9AZG4upgy4QBHuyMzkBKVZppyoU8/cQR41UXyM4pKQwcPaDHMHNHoimV3I0kNqOAZ7+LYqyvO0/PGWry9mcHeHEup4QzmYUmb7ujOZhgqLeri6mdj5T65O43FSx8eHKV3I2gsKySP392HBcHW1bfPtIst7Jf5++FELDzlHalmfisQvJKOv4olAcTc+jqaMuwnqre3unkJEDhBYsvyYBK7m0mpeSpb6I4n1vC6ttG0sPVwSxx9HBxYFTfbpp1ibyQV8oN7+1n2fojVHfwXjkHE/T1ditVb+98kn7Tf1fJXWnKun2J7IjO4Nk5Qxln5hru7AAvYtILSMktMfq+3955hopqHZGp+Xx19LzR928qKbklpOWVqiEHOqukMHDtDe79zR2J5lRyb4NDiTms2nGGOQE9uW+K+WdEmh3QE8DoZ++n0vL57kQaD0zpz/j+7ry54ww5ReVGbcNUau7knTBA9W/vdHS6TlNvB5XcWy2roIxHvjhBX3dH3vpTkKY3KjVXv+5ODO3pYtTkLqXkHz/F4O5kx8PXDuS1BcMpLq9i1Y5Yo7VhSocScnB3smNQD9N0U1XakaxoKM3tFCUZUMm9VfJKKrh/YzjF5VV8dMdoXBxszR1SrdkBPQk/d4nsQuOcWe85ncWhxFz+MnMQrg62DPJy4d7Jfnwdnsqxc7lGacNUpJQcTMxhfH9Vb++UaseTmWLeOExEJfcWyiooY8n/HeJ0eiHv3TaSIT1dzB3SZWYH9ERKjDL9XmW1jv/382n6ezpx29g/JjF/bMYgvN0ceOH7aKqqO85olOdySkjPL1P19s4qKQzcB4Bbb3NHYhIqubfA+ZwSFn90kJRLJXxy9xiu82/7jErGNszbhT7uXYxSmvnyyHkSs4t5bu6wy7p3Otnb8Pd5/pxOL2DToXNtbsdU/qi3q+Te6VRX6Wde6iQlGVDJvdniMgtZ/NEBCsoq+eL+8Uwa2D4vyAkhmO3fkwPxORSWVbZ6PwVllby75yzj+7szc1iPqx6fO7wnUwZ58O9dcWQVlLUlZJM5mJCDp4u9yYaFUNqR9AioKFTJvSWEEMmGOVMjhBDhhmXuQojdQoizhu/aDGZuIifOX+KW/zsIwOYHJhDcp6t5A2rC7OE9qajWEXqm9dPvfRCaQG5xBX+73r/ei8VCCF5dMJzyKh2vbz/dlnBNQkrJocQcxvfv3i4ufism1on6t9cw1pn7dCllsJSyZjLCZ4FfpJSDgF8Mv3dIv8dfZOl/D+PqYMuWFRPbXY29PqP6dsPD2a7VpZmU3BLW/57EopG9COzd8CxFfh5OrLimP99HXKi9pb+9SrxYTFZhuaq3d1ZJYeA1HJza5yduLWhVllkAfGr4+VNgoUbtaGpndAZ3f3KUPt0c2bJiAn27O5o7pGaxthJc5+/F3tgsyiqrW7z9WzvPIICVs4c0ue5D0wfSx70LL/5wql1P9afGk+nEqsrh/KFOddYOxknuEtglhDgmhHjAsMxLSplu+DkDuOrKoxDiASFEuBAiPDu79eUDrXx7LJWHPj+Ov48rmx8cb7ZhBVprVkBPiiuqOZBwsUXbRaTksS3yAvdN8cOna5cm13ewteblGwM4m1XE+t+TWhuu5g4m5uDlao9vB/kHrRhR6lGoKlPJvRUmSylHAXOBh4UQlx1BqR+D9qrBSKSUa6WUIVLKEE9Pz1Y1XK2T7IrOoLyq5Wenjfnk9ySe/CaS8f3d+fy+cXR17Hizo08c0B1ne5sWDSQmpeSfP8Xg4WzHn6cNbPZ2M4Z5MXOYF//Zc5YLeaWtCVdTUkoOJ+YwQdXbO6ekMBBW0G+iuSMxqTYndyllmuF7FrAVGAtkCiG8AQzfs9raTn0OJ+XwwKZjjPnHHp77LorDiTltmmpOSsm7e+J45X8xzA7wYv3yMTjZaz+TkhbsbayZPrQHe05nNnugr53RGRxNvsQT1w3GuYXP+6Ub/ZFIXvsxpjXhaupsVhEXiypUSaazSgoDn5Hg0PD1I0vUpuQuhHASQrjU/AzMAk4B24BlhtWWAT+0pZ2GjPV159N7xjJjmBc/RFxgydpDTHkzlFU7Yolr4bjmOp3k1R9jeHfPWRaP7s2a20dhb9Ox51ecHeBFTnEF4clN30laUaXjjZ9jGdTDmSUhfVrcVh93Rx6ZPpCfT2XwW1z7KrPV1tvVfKmdT0WxvizTyUoyAG09LfUCtho+6toAX0gpdwghjgJfCyHuBc4Bt7SxnXrZWFtxzWBPrhnsSUlFFbtjMtl6Io21YYl8uDcBf29XbhrZi/nBPng1UjOvqtbxzLcn+fZ4KvdM8uOFG4ZZxO3p04b0wM7Gip3RmU2OWPnZoXMk55TwyfIx2LRyPPr7p/bnu+NpvPTDKXb8ZSoOtu3jn+OhxBx6de1CH/emryEoFub8QdBVqeTeUlLKRGBEPctzgBlt2XdLOdrZsCC4FwuCe5FdWM6PURf4/kQa/9x+mtd/Ps2kAR4sCPZhzvCel40FU1ZZzWNfnmBXTCZPzBzMYzMGWkxd1tnehskD9dPv/X3esAafV35JJe/9epbJAz2YNqR11z9AXwp6ZUEAd358hLVhiTw2Y1Cr92UsOp2+f/u1Q70s5nVVWiApDKxsoc94c0dichZ5h6qniz13T/Ljh0cm8+uT1/DotYM4n1vCU1uiCPnHHh754ji/nM4kv6SSez89yq6YTF660Z/HZw6yuAQwJ6AnaXmlRF8oaHCd1aFnyS+t5PnrG/4H0FxTBnlyQ6A3a0LjNRlXvqXCz13iUkmlqrd3Vklh0Gcs2HW+XlId82phC/T3dOav1w3miZmDOH4+j+9PpPFj1AV+jErH2lB6+defRnDzaMscTGjGsB5YCdgVncHwXldfUDqfU8KnB86xeFRv/H2MM+3c3+f5s/dMFi9vi+bj5WOMss/WyCup4K9fR+Dt5sB1w9rfOECKxkovQXokXPOMuSMxC4s8c6+PEILR/brx2sLhHH5+Jh8vC+Gmkb1Yd9doi03sAN2d7Rnj686OBu5WXbUjFmsr0awblpqrp5sDf5k5mF9is9gdo92cro3R6SRPbI4gs6CMD5aOws2x/QzLrJjIuQMgdZ2y3g6dKLnXZWdjxYxhXrz9pxFcO9Tyz+hmB/QkLrOIpIvFly0/du4SP51M54Gp/Ru94Nwayyf5MtjLmZe3RVNaYdz7EJpjdWg8oWeyeXGePyP7duihjZTWSgoDmy7QK6TpdS1Qp0zunc2sAP0/sLpjzdTMsOTpYs8DU40/n6SttRWvLRhOWl4pq0PPGn3/jQmLy+adPXEsDPbhjvH9TNq20o4khUG/CWDT8W5CNAaV3DuB3t0cGd7L9bLk/tPJdE6cz2PlrMGa3ag1rn93Fo3sxdqwRBKyizRp40ppeaU8/tUJBvVw5vVFgRZ3gVxppqIsyIrptCUZUMm905jt35MT5/PILCijvKqaVTtiGdrThcWjW37DUks8d/0wHGyteemHaPQjUWinvKqahz4/TmW15MM7RuNoZ/H9BZSG1E6pp5K7YuFmD+8JwK6YTDYeOEdKbinPXz+stseQVjxd7Fk5awj74y/y08n0pjdog3/8eJrIlDzeWhykJuTo7JLCwN4NvIPNHYnZqFObTmJQD2f8PJzYciyVpOwirhnsydTBrb9hqSXuGN+Pb46l8MyWKKyFYG6gt9Hb2HoilU2HzvHA1P6a7F/pYJLCwHcyWLWPu6TNQZ25dxJCCGYFeBGZkkdReRXPXz/MZG1bWwn+e9cYBnm58OfPj/PGz7HNHsysOWIzCnjuu5OM9XPnaSN26VQ6qLzzcCmpU5dkQCX3TmVOgL40s2RMH5PPKNXTzYHND47n9nF9+ei3BJatP0JucUWb91tYVsmfPzuOi4Mtq28b2epxcRQLkrRP/10ld6WzCO7TlQ+XjuJvN/ibpX17G2tevymQN28O4khyLje+v59Tafmt3p+Ukqe+ieJ8bglrbh/V4SZUUTSSFAaOHtDDdJ9O2yOV3DsRYah3t3SsdmO7ZUwfvnlwAlJKFn14gC3HUlu1n3X7EtkRncFzc4cy1s/dyFEqHZKU+uTuNxU6eTdYldwVsxjRpyv/e3QyIf26sfKbSP7+fcvmYD2UmMOqHWeYO7wn90720zBSpUPJSYDCC52+JAMquStm1N3Zno33jOXBqf3ZdOgct649SGZBWZPbZRWU8cgXJ+jn7sibi4PUjUrKH5J+039XyV0ld8W8bKyteO76Yay5fRSxGYXMe38/R5IanjmqslrHw18cp7i8ig/vGH3Z2PyKQlIYuPYGd+MPqdHRqOSutAs3BHnz/cOTcLa34fZ1h9jwe1K9d7S+uSOWo8mXeOPmQJP3+FHaOZ0OkveperuBSu5KuzHYy4UfHpnEtCE9ePl/MTz5deRlI0puP5nOun1JLJvQjwXBvcwYqdIuZcVASY4qyRi0OrkLIfoIIUKFEDFCiGghxOOG5S8LIdKEEBGGr+uNF65i6VwdbFl752ievG4wWyPSWPThAc7nlJCQXcTTW6II7tPVbF05lXaudjyZKeaNo51oS5+4KuBJKeVxIYQLcEwIsdvw2DtSyrfbHp7SGVlZCR6dMYjhvd14/MsT3Lh6P90cbbGzseKDpaOws1EfOJV6JIWB+wBws9zJd1qi1X8lUsp0KeVxw8+FwGlAfVZWjGb6kB7879HJeLs5cC63hPduHYlP1y7mDktpj6qr4NzvqiRTh1HuZhFC+AIjgcPAJOARIcRdQDj6s/tLxmhH6Xz6dXfi+4cnkZ5fhp+Hk7nDUdqr9EgoL1DJvY42f74VQjgD3wJ/kVIWAB8CA4BgIB34VwPbPSCECBdChGdnZ7c1DMWCOdhaq8SuNExKCF+v/9lX1dtrtCm5CyFs0Sf2z6WU3wFIKTOllNVSSh2wDhhb37ZSyrVSyhApZYinp2mGnlUUxQKFvg4Rn8HkJ8BZ5ZIabektI4CPgdNSyn/XWV53MO2bgFOtD09RFKURB9dA2Jsw6i6Y8ZK5o2lX2lJznwTcCZwUQkQYlj0P3CaECAYkkAw82IY2FEVR6nfic9j5PPgvhHnvqhuXrtDq5C6l3A/UdzS3tz4cRVGUZjj9I2x7BAZcC4vWduoZlxqiOgwritKxJO6FLXdDr9Gw5DOwsTd3RO2SSu6KonQcqcfgy9uh+0C4/WuwU72oGqKSu6IoHUNWLHx+s75HzJ1bwVFN0NIYldwVRWn/Lp2DTQvB2h7u/B5cepo7onbPvPOtKYqiNKUoS5/YK0vh7p/BXc281RwquSuK0n6V5sGmRVCYAXdtAy81ImhzqeSuKEr7VFECXyyB7FhY+jX0GWPuiDoUldwVRWl/qirg67sg9Qgs/kTfn11pEXVBVVGUPyT+Bu+Ngl1/h7IC88Sgq4atD0L8bv2dpwELzRNHB6eSu6Ioeic+g88WQUUxHHgP3h8Fxz7VJ1tTkRK2r4To7+C6V2H0MtO1bWFUcleUzk5K+OU1+OFh/ZC5jxyB+0PBvT/87zFYew0k/26aWH59TT987+QnYNLjpmnTQqnkriidWWUZfHsf7HtbP7Li0m/AwQ16jYJ7dsLNH0PJJdhwvb4GfumcNnFkxcJPK2Hfv2D0cjXCoxGoC6qK0lkV58DmpXD+IMx8GSb95fKRFYWAwMUw5Ho48D7sfwfO7ICJj8Dkv4K9c9vaL8yAk1sgajNkRIGw0v+DueHfaoRHIxBSSnPHQEhIiAwPDzd3GIrSeeQkwOeLIT8NFv0fBNzU9Db5abDnZTj5NTj3hJkvQdCtYNWCAkB5oX5Ex6jNkPQbSB34jISgJRCwCFy8Wv2UOiMhxDEpZUi9j6nkriidzLkD8NXt+jPl276CPvVOltawlKOw4xlIOwY+o2DOG9B3XMPrV1dCwq8Q9TXE/gRVpdC1nz6hB90CHoPa9nw6scaSuyrLKEpnEvUN/PCQPrku/Vp/0bSl+oyBe/foz+D3vAzrZ8HwxXDdK+DWW7+OlPrkH7UZTn0LJTnQpRsE365P6n3GqtKLxlRyV5TOQEoIextC/wH9JsOSTW0bVdHKCkbcCkPnwe/v6mvysT/BpMf0nwiiNkNuon6gryFz9Ql94EywsTPaU1Iap5K7oli6qgr43+MQ+YW+Rj7/feMlWXtnuPYF/YXQ3S/Cb6sAAX5TYMqTMOxGfe8bxeRUclcUS1Z6CTbfCcn7YNrzcM3T2pRDuvaFP22Aac+BnTO49TJ+G0qLaNbPXQgxRwhxRggRL4R4Vqt2FEVpwKVk+HgWpByGm9bCtGe0r3N7DlGJvZ3Q5MxdCGENrAGuA1KBo0KIbVLKGC3aUxTlCilH4ctbQVeln9zCd5K5I1JMTKuyzFggXkqZCCCE+ApYABg3uWdGw5Z7jLpLRbEIuUng6g1Lt6iuhp2UVsm9F5BS5/dU4LKOsEKIB4AHAPr27du6Vmwc9B8DFUW5XN8J+gudTh7mjkQxE7NdUJVSrgXWgv4mplbtpPsAuGWjMcNSFEWxCFpdUE0D+tT5vbdhmaIoimICWiX3o8AgIYSfEMIOuBXYplFbiqIoyhU0KctIKauEEI8AOwFrYL2UMlqLthRFUZSraVZzl1JuB7ZrtX9FURSlYWqyDkVRFAukkruiKIoFUsldURTFAqnkriiKYoHaxUxMQohsoC0z73oAF40UjjGpuFpGxdUyKq6WscS4+kkpPet7oF0k97YSQoQ3NNWUOam4WkbF1TIqrpbpbHGpsoyiKIoFUsldURTFAllKcl9r7gAaoOJqGRVXy6i4WqZTxWURNXdFURTlcpZy5q4oiqLUoZK7oiiKBeowyb2pCbeFEPZCiM2Gxw8LIXxNEFMfIUSoECJGCBEthHi8nnWmCSHyhRARhq8XtY6rTtvJQoiThnbD63lcCCHeMxyzKCHEKI3jGVLnOEQIIQqEEH+5Yh2THS8hxHohRJYQ4lSdZe5CiN1CiLOG790a2HaZYZ2zQohlJojrLSFErOF12iqE6NrAto2+5hrE9bIQIq3O63V9A9s2+verQVyb68SULISIaGBbLY9XvfnBZO8xKWW7/0I/bHAC0B+wAyIB/yvWeQj4yPDzrcBmE8TlDYwy/OwCxNUT1zTgRzMdt2TAo5HHrwd+BgQwHjhs4tc0A/1NGGY5XsBUYBRwqs6yN4FnDT8/C6yqZzt3INHwvZvh524axzULsDH8vKq+uJrzmmsQ18vAyma81o3+/Ro7rise/xfwohmOV735wVTvsY5y5l474baUsgKomXC7rgXAp4aftwAzhBBCy6CklOlSyuOGnwuB0+jnj+0oFgAbpd4hoKsQwttEbc8AEqSUbbkzuU2klGFA7hWL676PPgUW1rPpbGC3lDJXSnkJ2A3M0TIuKeUuKWWV4ddD6Gc3M6kGjldzNOfvV5O4DDngFuBLY7XXXI3kB5O8xzpKcq9vwu0rk2jtOoY/gnygu0miAwxloJHA4XoeniCEiBRC/CyECDBVTIAEdgkhjgn9hORXas5x1cqtNPwHZ67jBeAlpUw3/JwBeNWzjjmPG8A96D9x1aep11wLjxjKResbKDGY83hNATKllGcbeNwkx+uK/GCS91hHSe7tmhDCGfgW+IuUsuCKh4+jLz2MAN4HvjdhaJOllKOAucDDQoipJmy7QUI/9eJ84Jt6Hjbn8bqM1H8+bld9hYUQfwOqgM8bWMXUr/mHwAAgGEhHXwJpT26j8bN2zY9XY/lBy/dYR0nuzZlwu3YdIYQN4AbkaB2YEMIW/Qv3uZTyuysfl1IWSCmLDD9vB2yFEB5ax2VoL83wPQvYiv7jcV3mmsh8LnBcSpl55QPmPF4GmTWlKcP3rHrWMctxE0IsB+YBSw1J4SrNeM2NSkqZKaWsllLqgHUNtGeu42UDLAI2N7SO1sergfxgkvdYR0nuzZlwextQc0V5MfBrQ38AxmKo530MnJZS/ruBdXrW1P6FEGPRH3NT/NNxEkK41PyM/oLcqStW2wbcJfTGA/l1Pi5qqcGzKXMdrzrqvo+WAT/Us85OYJYQopuhDDHLsEwzQog5wNPAfCllSQPrNOc1N3Zcda/R3NRAe835+9XCTCBWSpla34NaH69G8oNp3mNaXCXW4gt9z4449Ffd/2ZY9ir6NzuAA/qP+fHAEaC/CWKajP4jVRQQYfi6HlgBrDCs8wgQjb6HwCFgoomOV39Dm5GG9muOWd3YBLDGcExPAiEmiMsJfbJ2q7PMLMcL/T+YdKASfU3zXvTXaX4BzgJ7AHfDuiHAf+tse4/hvRYP3G2CuOLR12Br3mc1PcN8gO2NveYax7XJ8N6JQp+0vK+My/D7VX+/WsZlWL6h5n1VZ11THq+G8oNJ3mNq+AFFURQL1FHKMoqiKEoLqOSuKIpigVRyVxRFsUAquSuKolggldwVRVEskEruiqIoFkgld0VRFAv0/wGSY4DFgXgRDgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "humanist_vols[['humanities_computing_counts', 'digital_humanities_counts']].plot()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "import nltk\n", "from nltk import word_tokenize\n", "from nltk import FreqDist" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['From',\n", " ':',\n", " 'MCCARTY',\n", " '@',\n", " 'UTOREPAS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " '12',\n", " 'May',\n", " '1987',\n", " ',',\n", " '23:50:02',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '1',\n", " '(',\n", " '1',\n", " ')',\n", " 'This',\n", " 'is',\n", " 'test',\n", " 'number',\n", " '1',\n", " '.',\n", " 'Please',\n", " 'acknowledge',\n", " '.',\n", " 'From',\n", " ':',\n", " 'MCCARTY',\n", " '@',\n", " 'UTOREPAS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " '13',\n", " 'May',\n", " '1987',\n", " ',',\n", " '00:06:41',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '2',\n", " '(',\n", " '2',\n", " ')',\n", " 'This',\n", " 'is',\n", " 'test',\n", " 'number',\n", " '2',\n", " '.',\n", " 'Please',\n", " 'acknowledge',\n", " '.',\n", " 'From',\n", " ':',\n", " 'MCCARTY',\n", " '@',\n", " 'UTOREPAS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " '13',\n", " 'May',\n", " '1987',\n", " ',',\n", " '23:08:57',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '3',\n", " '(',\n", " '3',\n", " ')',\n", " 'This',\n", " 'is',\n", " 'a',\n", " 'test',\n", " 'of',\n", " 'a',\n", " 'new',\n", " 'BITNET',\n", " 'mailer',\n", " 'for',\n", " 'people',\n", " 'involved',\n", " 'with',\n", " 'the',\n", " 'support',\n", " 'of',\n", " 'computing',\n", " 'in',\n", " 'the',\n", " 'humanities',\n", " '.',\n", " 'Please',\n", " 'acknowledge',\n", " 'receipt',\n", " 'of',\n", " 'this',\n", " 'message',\n", " '.',\n", " 'A',\n", " 'more',\n", " 'complete',\n", " 'explanation',\n", " 'and',\n", " 'welcoming',\n", " 'message',\n", " 'will',\n", " 'be',\n", " 'forthcoming',\n", " '.',\n", " 'Thanks',\n", " 'very',\n", " 'much',\n", " '.',\n", " 'From',\n", " ':',\n", " 'IAN',\n", " '@',\n", " 'UTOREPAS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " '14',\n", " 'May',\n", " '1987',\n", " ',',\n", " '16:05:17',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '4',\n", " '(',\n", " '4',\n", " ')',\n", " 'Message',\n", " 'received',\n", " '.',\n", " 'From',\n", " ':',\n", " 'MCCARTY',\n", " '@',\n", " 'UTOREPAS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " '14',\n", " 'May',\n", " '1987',\n", " ',',\n", " '20:17:18',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '5',\n", " '(',\n", " '5',\n", " ')',\n", " 'Welcome',\n", " 'to',\n", " 'HUMANIST',\n", " 'HUMANIST',\n", " 'is',\n", " 'a',\n", " 'Bitnet/NetNorth',\n", " 'electronic',\n", " 'mail',\n", " 'network',\n", " 'for',\n", " 'people',\n", " 'who',\n", " 'support',\n", " 'computing',\n", " 'in',\n", " 'the',\n", " 'humanities',\n", " '.',\n", " 'Those',\n", " 'who',\n", " 'teach',\n", " ',',\n", " 'review',\n", " 'software',\n", " ',',\n", " 'answer',\n", " 'questions',\n", " ',',\n", " 'give',\n", " 'advice',\n", " ',',\n", " 'program',\n", " ',',\n", " 'write',\n", " 'documentation',\n", " ',',\n", " 'or',\n", " 'otherwise',\n", " 'support',\n", " 'research',\n", " 'and',\n", " 'teaching',\n", " 'in',\n", " 'this',\n", " 'area',\n", " 'are',\n", " 'included',\n", " '.',\n", " 'Although',\n", " 'HUMANIST',\n", " 'is',\n", " 'intended',\n", " 'to',\n", " 'help',\n", " 'these',\n", " 'people',\n", " 'exchange',\n", " 'all',\n", " 'kinds',\n", " 'of',\n", " 'information',\n", " ',',\n", " 'it',\n", " 'is',\n", " 'primarily',\n", " 'meant',\n", " 'for',\n", " 'discussion',\n", " 'rather',\n", " 'than',\n", " 'publication',\n", " 'or',\n", " 'advertisement',\n", " '.',\n", " 'In',\n", " 'general',\n", " ',',\n", " 'members',\n", " 'of',\n", " 'the',\n", " 'network',\n", " 'are',\n", " 'encouraged',\n", " 'to',\n", " 'ask',\n", " 'questions',\n", " 'and',\n", " 'offer',\n", " 'answers',\n", " ',',\n", " 'to',\n", " 'begin',\n", " 'and',\n", " 'contribute',\n", " 'to',\n", " 'discussions',\n", " ',',\n", " 'to',\n", " 'suggest',\n", " 'problems',\n", " 'for',\n", " 'research',\n", " ',',\n", " 'and',\n", " 'so',\n", " 'forth',\n", " '.',\n", " 'One',\n", " 'of',\n", " 'the',\n", " 'specific',\n", " 'motivations',\n", " 'for',\n", " 'establishing',\n", " 'HUMANIST',\n", " 'was',\n", " 'to',\n", " 'allow',\n", " 'people',\n", " 'involved',\n", " 'in',\n", " 'this',\n", " 'area',\n", " 'to',\n", " 'form',\n", " 'a',\n", " 'common',\n", " 'idea',\n", " 'of',\n", " 'the',\n", " 'nature',\n", " 'of',\n", " 'their',\n", " 'work',\n", " ',',\n", " 'its',\n", " 'requirements',\n", " ',',\n", " 'and',\n", " 'its',\n", " 'standards',\n", " '.',\n", " 'Institutional',\n", " 'recognition',\n", " 'is',\n", " 'not',\n", " 'infrequently',\n", " 'inadequate',\n", " ',',\n", " 'at',\n", " 'least',\n", " 'partly',\n", " 'because',\n", " 'computing',\n", " 'in',\n", " 'the',\n", " 'humanities',\n", " 'is',\n", " 'an',\n", " 'emerging',\n", " 'and',\n", " 'highly',\n", " 'cross-disciplinary',\n", " 'field',\n", " '.',\n", " 'Its',\n", " 'support',\n", " 'is',\n", " 'significantly',\n", " 'different',\n", " 'from',\n", " 'the',\n", " 'support',\n", " 'of',\n", " 'other',\n", " 'kinds',\n", " 'of',\n", " 'computing',\n", " ',',\n", " 'with',\n", " 'which',\n", " 'it',\n", " 'may',\n", " 'be',\n", " 'confused',\n", " '.',\n", " 'Perhaps',\n", " 'you',\n", " 'do',\n", " \"n't\",\n", " 'think',\n", " 'so',\n", " '.',\n", " 'In',\n", " 'any',\n", " 'case',\n", " ',',\n", " 'let',\n", " 'us',\n", " 'know',\n", " 'what',\n", " 'you',\n", " 'do',\n", " 'think',\n", " ',',\n", " 'about',\n", " 'this',\n", " 'or',\n", " 'any',\n", " 'other',\n", " 'relevant',\n", " 'subject',\n", " '.',\n", " 'HUMANIST',\n", " 'is',\n", " 'one',\n", " 'of',\n", " 'the',\n", " 'inaugural',\n", " 'projects',\n", " 'of',\n", " 'a',\n", " 'new',\n", " 'special',\n", " 'interest',\n", " 'group',\n", " 'for',\n", " 'the',\n", " 'support',\n", " 'of',\n", " 'computing',\n", " 'in',\n", " 'the',\n", " 'humanities',\n", " ',',\n", " 'which',\n", " 'is',\n", " 'currently',\n", " 'applying',\n", " 'for',\n", " 'joint',\n", " 'affiliation',\n", " 'with',\n", " 'the',\n", " 'Association',\n", " 'for',\n", " 'Computing',\n", " 'in',\n", " 'the',\n", " 'Humanities',\n", " '(',\n", " 'ACH',\n", " ')',\n", " 'and',\n", " 'the',\n", " 'Association',\n", " 'for',\n", " 'Literary',\n", " 'and',\n", " 'Linguistic',\n", " 'Computing',\n", " '(',\n", " 'ALLC',\n", " ')',\n", " '.',\n", " 'Information',\n", " 'about',\n", " 'this',\n", " 'SIG',\n", " 'may',\n", " 'be',\n", " 'obtained',\n", " 'by',\n", " 'sending',\n", " 'a',\n", " 'message',\n", " 'to',\n", " 'George',\n", " 'Brett',\n", " '(',\n", " 'ECSGHB',\n", " '@',\n", " 'TUCC.BITNET',\n", " ')',\n", " '.',\n", " 'Currently',\n", " 'anyone',\n", " 'given',\n", " 'access',\n", " 'to',\n", " 'HUMANIST',\n", " 'can',\n", " 'send',\n", " 'mail',\n", " 'to',\n", " 'all',\n", " 'other',\n", " 'members',\n", " 'of',\n", " 'the',\n", " 'network',\n", " 'without',\n", " 'restriction',\n", " '.',\n", " 'It',\n", " 'is',\n", " 'expected',\n", " 'that',\n", " 'the',\n", " 'members',\n", " 'will',\n", " 'at',\n", " 'least',\n", " 'be',\n", " 'civil',\n", " 'to',\n", " 'each',\n", " 'other',\n", " ',',\n", " 'however',\n", " 'spirited',\n", " 'the',\n", " 'argument',\n", " '!',\n", " 'New',\n", " 'members',\n", " 'are',\n", " 'welcome',\n", " ',',\n", " 'provided',\n", " 'that',\n", " 'they',\n", " 'fit',\n", " 'the',\n", " 'broad',\n", " 'guidelines',\n", " 'described',\n", " 'above',\n", " '.',\n", " 'Please',\n", " 'tell',\n", " 'anyone',\n", " 'who',\n", " 'might',\n", " 'be',\n", " 'interested',\n", " 'to',\n", " 'send',\n", " 'a',\n", " 'note',\n", " 'to',\n", " 'me',\n", " ',',\n", " 'giving',\n", " 'his',\n", " 'or',\n", " 'her',\n", " 'name',\n", " ',',\n", " 'address',\n", " ',',\n", " 'telephone',\n", " 'number',\n", " ',',\n", " 'university',\n", " 'affiliation',\n", " ',',\n", " 'and',\n", " 'a',\n", " 'short',\n", " 'description',\n", " 'of',\n", " 'what',\n", " 'he',\n", " 'or',\n", " 'she',\n", " 'does',\n", " 'to',\n", " 'support',\n", " 'computing',\n", " 'in',\n", " 'the',\n", " 'humanities',\n", " '.',\n", " 'I',\n", " 'will',\n", " 'then',\n", " 'add',\n", " 'that',\n", " 'person',\n", " 'to',\n", " 'the',\n", " 'list',\n", " '.',\n", " 'If',\n", " 'anyone',\n", " 'should',\n", " 'wish',\n", " 'to',\n", " 'be',\n", " 'dropped',\n", " 'from',\n", " 'the',\n", " 'list',\n", " ',',\n", " 'please',\n", " 'send',\n", " 'a',\n", " 'note',\n", " 'to',\n", " 'that',\n", " 'effect',\n", " '.',\n", " 'Willard',\n", " 'McCarty',\n", " 'Centre',\n", " 'for',\n", " 'Computing',\n", " 'in',\n", " 'the',\n", " 'Humanities',\n", " 'University',\n", " 'of',\n", " 'Toronto',\n", " '(',\n", " 'MCCARTY',\n", " '@',\n", " 'UTOREPAS.BITNET',\n", " ')',\n", " 'From',\n", " ':',\n", " 'MCCARTY',\n", " '@',\n", " 'UTOREPAS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " '15',\n", " 'May',\n", " '1987',\n", " ',',\n", " '11:15:21',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '6',\n", " '(',\n", " '6',\n", " ')',\n", " 'My',\n", " 'apologies',\n", " 'for',\n", " 'a',\n", " 'recent',\n", " 'flood',\n", " 'of',\n", " 'junk',\n", " 'mail',\n", " 'relating',\n", " 'to',\n", " 'a',\n", " 'bad',\n", " 'address',\n", " 'for',\n", " 'one',\n", " 'of',\n", " 'our',\n", " 'members',\n", " '.',\n", " 'Please',\n", " 'bear',\n", " 'with',\n", " 'me',\n", " 'while',\n", " 'I',\n", " 'figure',\n", " 'out',\n", " 'the',\n", " 'arcane',\n", " 'manners',\n", " 'and',\n", " 'methods',\n", " 'of',\n", " 'this',\n", " 'very',\n", " 'promising',\n", " 'tool',\n", " '.',\n", " 'From',\n", " ':',\n", " 'JACKA',\n", " '@',\n", " 'PENNDRLS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " 'Friday',\n", " ',',\n", " '15',\n", " 'May',\n", " '1987',\n", " '1536-EST',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '7',\n", " '(',\n", " '7',\n", " ')',\n", " 'Query-',\n", " 'Is',\n", " 'this',\n", " 'a',\n", " 'LSERVER',\n", " '?',\n", " 'If',\n", " 'so',\n", " ',',\n", " 'take',\n", " 'a',\n", " 'look',\n", " 'at',\n", " 'how',\n", " 'Knut',\n", " 'Hofland',\n", " 'has',\n", " 'set',\n", " 'up',\n", " 'his',\n", " 'Bulletin',\n", " 'Board',\n", " '....',\n", " 'JACK',\n", " 'From',\n", " ':',\n", " 'MCCARTY',\n", " '@',\n", " 'UTOREPAS',\n", " 'Subject',\n", " ':',\n", " 'Date',\n", " ':',\n", " '18',\n", " 'May',\n", " '1987',\n", " ',',\n", " '20:09:38',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '8',\n", " '(',\n", " '8',\n", " ')',\n", " 'For',\n", " 'those',\n", " 'of',\n", " 'you',\n", " 'who',\n", " 'happen',\n", " 'to',\n", " 'know',\n", " 'less',\n", " 'than',\n", " 'I',\n", " 'do',\n", " 'about',\n", " 'the',\n", " 'Bitnet',\n", " 'facility',\n", " 'that',\n", " 'runs',\n", " 'HUMANIST',\n", " ',',\n", " 'I',\n", " 'have',\n", " 'just',\n", " 'sent',\n", " 'out',\n", " 'a',\n", " 'lengthy',\n", " 'memo',\n", " 'by',\n", " 'Eric',\n", " 'Thomas',\n", " 'on',\n", " 'the',\n", " '``',\n", " 'revised',\n", " 'List',\n", " 'Processor',\n", " ',',\n", " \"''\",\n", " 'or',\n", " 'ListServ',\n", " '.',\n", " 'The',\n", " 'memo',\n", " 'lists',\n", " 'commands',\n", " 'available',\n", " 'to',\n", " 'you',\n", " '.',\n", " 'Please',\n", " 'note',\n", " 'the',\n", " 'section',\n", " 'entitled',\n", " ',',\n", " '``',\n", " 'How',\n", " 'can',\n", " 'I',\n", " 'send',\n", " 'commands',\n", " 'to',\n", " 'LISTSERV',\n", " '?',\n", " \"''\",\n", " 'If',\n", " 'you',\n", " \"'re\",\n", " 'as',\n", " 'ignorant',\n", " 'about',\n", " 'these',\n", " 'things',\n", " 'as',\n", " 'I',\n", " 'was',\n", " 'a',\n", " 'few',\n", " 'days',\n", " 'ago',\n", " ',',\n", " 'you',\n", " \"'ll\",\n", " 'need',\n", " 'the',\n", " 'help',\n", " 'of',\n", " 'some',\n", " 'local',\n", " 'expert',\n", " '.',\n", " 'HUMANIST',\n", " 'has',\n", " ',',\n", " 'I',\n", " \"'m\",\n", " 'happy',\n", " 'to',\n", " 'say',\n", " ',',\n", " 'reached',\n", " 'addresses',\n", " 'on',\n", " 'ARPA-net',\n", " ',',\n", " 'uucp',\n", " ',',\n", " 'and',\n", " 'JANET',\n", " '(',\n", " 'in',\n", " 'the',\n", " 'UK',\n", " ')',\n", " '.',\n", " 'It',\n", " 'remains',\n", " 'to',\n", " 'be',\n", " 'seen',\n", " 'whether',\n", " 'messages',\n", " 'sent',\n", " 'to',\n", " 'HUMANIST',\n", " 'from',\n", " 'these',\n", " 'networks',\n", " 'will',\n", " 'be',\n", " 'successfully',\n", " 'redistributed',\n", " '.',\n", " 'I',\n", " \"'ll\",\n", " 'be',\n", " 'asking',\n", " 'one',\n", " 'person',\n", " 'from',\n", " 'each',\n", " 'to',\n", " 'send',\n", " 'a',\n", " 'test',\n", " 'message',\n", " '.',\n", " 'This',\n", " 'will',\n", " 'mean',\n", " ',',\n", " 'alas',\n", " ',',\n", " 'more',\n", " 'junk-mail',\n", " ',',\n", " 'which',\n", " 'I',\n", " 'hope',\n", " 'you',\n", " 'will',\n", " 'excuse',\n", " '.',\n", " 'From',\n", " ':',\n", " 'SUE',\n", " 'ZAYAC',\n", " 'Subject',\n", " ':',\n", " 'Scholarly',\n", " 'Information',\n", " 'Journal',\n", " 'Date',\n", " ':',\n", " 'Mon',\n", " ',',\n", " '18',\n", " 'May',\n", " '87',\n", " '09:51',\n", " 'EDT',\n", " 'X-Humanist',\n", " ':',\n", " 'Vol',\n", " '.',\n", " '1',\n", " 'Num',\n", " '.',\n", " '9',\n", " '(',\n", " '9',\n", " ')',\n", " 'Hello',\n", " ':',\n", " 'I',\n", " \"'ve\",\n", " 'just',\n", " 'sent',\n", " 'a',\n", " 'complimentary',\n", " 'copy',\n", " 'of',\n", " 'the',\n", " 'Columbia',\n", " 'University',\n", " \"''\",\n", " 'Scholarly',\n", " 'Information',\n", " 'Center',\n", " 'Journal',\n", " \"''\",\n", " 'to',\n", " 'all',\n", " 'of',\n", " 'you',\n", " 'whose',\n", " 'names',\n", " 'I',\n", " 'had',\n", " 'from',\n", " 'the',\n", " 'original',\n", " 'meeting',\n", " 'of',\n", " 'the',\n", " 'Ad',\n", " 'Hoc',\n", " 'SIC',\n", " 'for',\n", " 'Support',\n", " 'Issues',\n", " 'at',\n", " 'USC',\n", " 'in',\n", " ...]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(humanist_vols[0:2]['text'].map(word_tokenize), [])" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAE5CAYAAABRbh3UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABs/ElEQVR4nO2dd5hdVbn/P++UTDKkUyMgoYmAIDChiF6sKOpVlGtv/GyoFxVFr9eLBeu1i2LBC1ItIAIKIkU6Ii2ZkEISQhpppE+SSTJ9Zv3+eN+VtebkTHJyMpOZzLzf59nP2WftvVfba719rS0hBBwOh8PhKAcV/V0Bh8PhcOy5cCbicDgcjrLhTMThcDgcZcOZiMPhcDjKhjMRh8PhcJQNZyIOh8PhKBtV/V2B3Y199tknTJw4saxnm5ube7cyZWDEiBEDoh59icHexsHePvA2DlSMGDGi7Gfr6+vXhhD2LUwfckxk4sSJTJkypaxn6+vre7k2O4+6uroBUY++xGBv42BvH3gbByrq6urKflZEFhdLd3OWw+FwOMqGMxGHw+FwlA1nIg6Hw+EoG85EHA6Hw1E2nIk4HA6Ho2w4E3E4HA5H2XAmUiJCCLR3+bb5DofDkcOZSAlY3djCof9zB5/8+5r+rorD4XAMKDgTKQHDqrSb2jtdE3E4HI4czkRKQE1VJYCbsxwOh6MAzkRKQNJE1DficDgcDoUzkRJQWSFUVQgB6HAe4nA4HFvhTKRE1LhfxOFwOLaBM5ESUVNtfhFnIg6Hw7EVzkRKxFZNpKufK+JwOBwDCM5ESkRkIm2uiTgcDsdWOBMpER7m63A4HNvCmUiJyMN8HQ6Hw6FwJlIi3JzlcDgc28KZSImoqY6OdWciDofDEeFMpERs9Ym4JuJwOBxb4UykRHiIr8PhcGyLPmMiIjJcRJ4UkekiMktEvmnph4rIEyIyX0T+JCLDLL3G/s+36xOzvP7H0ueKyBuy9LMsbb6IfLmv2gLuE3E4HI5i6EtNpBV4TQjhpcAJwFkichrwA+CSEMIRwHrgo3b/R4H1ln6J3YeIHAO8BzgWOAv4tYhUikgl8CvgjcAxwHvt3j6BbwfvcDgc26LPmEhQbLa/1XYE4DXATZZ+LfA2Oz/b/mPXXysiYuk3hBBaQwiLgPnAKXbMDyEsDCG0ATfYvX0CXyficDgc26JPfSKmMUwDVgP3AAuADSGEDrtlGXCgnR8ILAWw6xuBvfP0gmd6Su8T1Pg6EYfD4dgGVX2ZeQihEzhBRMYCfwFe3Jfl9QQROQ84D2DChAnU19fvdB4NazcBsKWljaYm6dX67Qzq6+tpamrqt/J3BwZ7Gwd7+8DbOFBRDu3bEfqUiUSEEDaIyAPAy4CxIlJl2sZBwHK7bTlwMLBMRKqAMcC6LD0if6an9MLyLwcuB5g0aVKoq6vb6Tb8a8M8eOZZqKyitrZ2p5/vLdTV1fXJQBhIGOxtHOztA2/jQEU5tG9H6MvorH1NA0FERgBnAnOAB4B32G3nArfa+W32H7t+f9DPCN4GvMeitw4FjgSeBCYDR1q01zDU+X5bX7XHo7McDodjW/SlJjIBuNaiqCqAG0MIt4vIbOAGEfkO8BRwpd1/JfA7EZkPNKBMgRDCLBG5EZgNdADnm5kMEfk0cDdQCVwVQpjVV42J0Vkdvk7E4XA4tqLPmEgIYQZwYpH0hWhkVWF6C/DOHvL6LvDdIul3AHfscmVLQIzOck3E4XA4EnzFeolIK9adiTgcDkeEM5ESETdgbPMQX4fD4dgKZyIlwjdgdDgcjm3hTKREuDnL4XA4toUzkRLhe2c5HA7HtnAmUiJ8K3iHw+HYFs5ESoSH+DocDse2cCZSIrZ+HteZiMPhcGyFM5ESsXXbE3esOxwOx1Y4EykR0ZzV4etEHA6HYyuciZSItNjQNRGHw+GIcCZSIkZUqybS0hnQzYUdDofD4UykRFRXVlAl0BV8J1+Hw+GIcCayE6ip0i8atrpJy+FwOABnIjuFrUykw5mIw+FwgDORnUJNpTKRFtdEHA6HA3AmslMY7pqIw+FwdIMzkZ3AVk3EmYjD4XAAzkR2Cu5Ydzgcju5wJrITiJqIm7McDodD4UxkJxB9Iu5YdzgcDkWfMREROVhEHhCR2SIyS0QusPRviMhyEZlmx5uyZ/5HROaLyFwReUOWfpalzReRL2fph4rIE5b+JxEZ1lftAQ/xdTgcjkL0pSbSAXwhhHAMcBpwvogcY9cuCSGcYMcdAHbtPcCxwFnAr0WkUkQqgV8BbwSOAd6b5fMDy+sIYD3w0T5sj5uzHA6HowB9xkRCCCtCCFPtfBMwBzhwO4+cDdwQQmgNISwC5gOn2DE/hLAwhNAG3ACcLSICvAa4yZ6/FnhbnzTG4I51h8Ph6I7d4hMRkYnAicATlvRpEZkhIleJyDhLOxBYmj22zNJ6St8b2BBC6ChI7zMM9xBfh8Ph6Iaqvi5AREYCNwOfCyE0ishlwLeBYL8/AT7Sx3U4DzgPYMKECdTX15eXT1c7AFta2mhqauq1+u0M6uvr+63s3YXB3sbB3j7wNg5UlEv7toc+ZSIiUo0ykD+EEG4BCCGsyq5fAdxuf5cDB2ePH2Rp9JC+DhgrIlWmjeT3d0MI4XLgcoBJkyaFurq6stpz76J/Aq10ShW1tbVl5bGrqKur65OBMJAw2Ns42NsH3saBinJp3/bQl9FZAlwJzAkh/DRLn5Dd9nbgaTu/DXiPiNSIyKHAkcCTwGTgSIvEGoY6328L+lGPB4B32PPnArf2VXvAV6w7HA5HIfpSE3k58EFgpohMs7SL0OiqE1Bz1nPAJwBCCLNE5EZgNhrZdX4IoRNARD4N3A1UAleFEGZZfv8N3CAi3wGeQplWn2G4O9YdDoejG/qMiYQQHgGkyKU7tvPMd4HvFkm/o9hzIYSFaPTWboGH+DocDkd3+Ir1nYBrIg6Hw9EdzkR2AsPcJ+JwOBzd4ExkJ+DfE3E4HI7ucCayE4gr1lc3dbKssWMHdzscDsfghzORnUBtdcXWDrv4oYZ+rYvD4XAMBDgT2QnUVApfPH0sABtautClKg6HwzF04UxkJ3HqgcMxqxYdXf1bF4fD4ehvOBMpA1UWpdXe5ZqIw+EY2nAmUgaGWa+1+3oRh8MxxOFMpAwkTaSfK+JwOBz9DGciZWBYhTKRNtdEHA7HEIczkTIQNZEO94k4HI4hDmciZWCrT8TNWQ6HY4jDmUgZqI4+ETdnORyOIQ5nImWgusJDfB0OhwOciZSF6kr9bevs33o4HA5Hf8OZSBmoqnDHusPhcIAzkbIQvyviIb4Oh2Oow5lIGajeGp3lTMThcAxtOBMpAzE6q8N9Ig6HY4jDmUgZiNFZba6JOByOIY4+YyIicrCIPCAis0VklohcYOnjReQeEZlnv+MsXUTkUhGZLyIzROSkLK9z7f55InJull4nIjPtmUtFRPqqPTmSJuJMxOFwDG30pSbSAXwhhHAMcBpwvogcA3wZuC+EcCRwn/0HeCNwpB3nAZeBMh3gYuBU4BTg4sh47J6PZ8+d1Yft2YroE2nzFesOh2OIo8+YSAhhRQhhqp1vAuYABwJnA9fabdcCb7Pzs4HrguJxYKyITADeANwTQmgIIawH7gHOsmujQwiPB/3E4HVZXn0KX7HucDgcit3iExGRicCJwBPA/iGEFXZpJbC/nR8ILM0eW2Zp20tfViS9z+Er1h0Oh0NR1dcFiMhI4GbgcyGExtxtEUIIItLnlFhEzkNNZEyYMIH6+vqy8mlqatKTznYAmlvbU9puQn19/W4vc3djsLdxsLcPvI0DFeXSvu2hT5mIiFSjDOQPIYRbLHmViEwIIawwk9RqS18OHJw9fpClLQdeVZD+oKUfVOT+bRBCuBy4HGDSpEmhrq6urPbEF1A7HKAFKqqora0tK69yUVdX1ycDYSBhsLdxsLcPvI0DFeXSvu2hL6OzBLgSmBNC+Gl26TYgRlidC9yapX/IorROAzaa2etu4PUiMs4c6q8H7rZrjSJympX1oSyvPkW1f5TK4XA4gL7VRF4OfBCYKSLTLO0i4PvAjSLyUWAx8C67dgfwJmA+0AR8GCCE0CAi3wYm233fCiE02Pl/AtcAI4A77ehzxA0Y/XsiDodjqKPPmEgI4RGgp3Ubry1yfwDO7yGvq4CriqRPAV6yC9UsC1sd666JOByOIY6dNmeZWen4vqjMnoKtIb4eneVwOIY4SmIiIvKgiIy2hX9TgStE5Kc7em6wYusGjK6JOByOIY5SNZExIYRG4Bx0QeCpwOv6rloDG8O2aiL9XBGHw+HoZ5TKRKosHPddwO19WJ89Av5RKofD4VCUykS+iYbazg8hTBaRw4B5fVetgQ3/KJXD4XAoSo3OWhFC2OpMDyEsHMo+kaqtH6Xq33o4HA5Hf6NUTeQXJaYNCQzzDRgdDocD2IEmIiIvA04H9hWRC7NLo4HKvqzYQIZvwOhwOByKHZmzhgEj7b5RWXoj8I6+qtRAR1Vcse6fx3U4HEMc22UiIYSHgIdE5JoQwuLdVKcBj2HZivUQArvpg4oOh8Mx4FCqY71GRC4HJubPhBBe0xeVGuiorBCGVeiXDds6oabPN9R3OByOgYlSyd+fgd8AvwXciAOMqK6grbWLpo4uaqqGrHvI4XAMcZTKRDpCCJf1aU32MNRWCxtbobk9MG54f9fG4XA4+gelhvj+TUT+U0QmiMj4ePRpzQY4aqvVD9LU7hFaDodj6KJUTSR+ROq/srQAHNa71dlzMMJWHDb5ikOHwzGEURITCSEc2tcV2dMQNZHmDtdEHA7H0EVJTEREPlQsPYRwXe9WZ89BZCJbXBNxOBxDGKWas07OzoejXyacCgxZJjLCPirS7D4Rh8MxhFGqOesz+X8RGQvc0BcV2lOw1ZzlTMThcAxh7PTncQ1bgCHtJ6mtcnOWw+FwlOoT+RsajQW68eLRwI19Vak9AVvNWe5YdzgcQxil+kR+nJ13AItDCMv6oD57DHydiMPhcJRozrKNGJ9Bd/IdB7Tt6BkRuUpEVovI01naN0RkuYhMs+NN2bX/EZH5IjJXRN6QpZ9lafNF5MtZ+qEi8oSl/0lEhpXW5N5BYiJuznI4HEMXJTEREXkX8CTwTvQ760+IyI62gr8GOKtI+iUhhBPsuMPyPwZ4D3CsPfNrEakUkUrgV8AbgWOA99q9AD+wvI4A1gMfLaUtvYW42NAd6w6HYyijVHPWV4CTQwirAURkX+Be4KaeHgghPCwiE0vM/2zghhBCK7BIROYDp9i1+SGEhVbuDcDZIjIHeA3wPrvnWuAbwG7b32urJuI+EYfDMYRRKhOpiAzEsI7yI7s+bYsXpwBfCCGsBw4EHs/uWWZpAEsL0k8F9gY2hBA6ity/DUTkPOA8gAkTJlBfX19WxZuamlKeHWrG2tLW2S29r1FfX79by+sPDPY2Dvb2gbdxoKJc2rc9lMpE7hKRu4Hr7f+7gTvKKO8y4NtopNe3gZ8AHykjn51CCOFy4HKASZMmhbq6urLyyV/A+KouYDMtHVBbW9sb1SwJdXV1fTIQBhIGexsHe/vA2zhQUS7t2x529I31I4D9Qwj/JSLnAK+wS48Bf9jZwkIIq7K8rwBut7/LgYOzWw+yNHpIXweMFZEq00by+3cL4jqR5vZAVwhU+NcNHQ7HEMSOTFI/Q7+nTgjhlhDChSGEC4G/2LWdgohMyP6+HYiRW7cB7xGRGhE5FDgSdeRPBo60SKxhqPP9thBCAB4gfef9XODWna3PrqCyQhg1TOgCNrZ6hJbD4Ria2JE5a/8QwszCxBDCzB05zUXkeuBVwD4isgy4GHiViJyAmrOeAz5h+c0SkRuB2eg6lPNDCJ2Wz6eBu9FFjleFEGZZEf8N3CAi3wGeAq7cUWN7G/vUVrKprYN1TV2MG+5fN3Q4HEMPO2IiY7dzbcT2HgwhvLdIco+EPoTwXeC7RdLvoIj/xSK2TilM353Ye0QlizZ0sLapkyPGV/dnVRwOh6NfsCNz1hQR+Xhhooh8DNizPEp9gH1qVftY1+yfnXc4HEMTO9JEPgf8RUTeT2Iak4BhqE9jSGPvWuXBa5uciTgcjqGJ7TIRi6Y6XUReDbzEkv8eQri/z2u2B2DvEVETcce6w+EYmij1eyIPoNFQjgzRnOWaiMPhGKood9W5A9h7hHbfOmciDodjiMKZyC4gmrMaWrro7PI9tBwOx9CDM5FdQHWlMLqmgq4Ajb7g0OFwDEE4E9lFjBuuXbi+xZmIw+EYenAmsotITMT9Ig6HY+jBmcguYmxkIh7m63A4hiCciewixplzfYObsxwOxxCEM5FdhPtEHA7HUIYzkV1E3L3XfSIOh2MowpnILsJ9Ig6HYyjDmcguYtwIj85yOBxDF85EdhHRJ7KmqYv5De39XBuHw+HYvXAmsosYXlXBPqaNfOX+dTy/qaOfa+RwOBy7D85EegHffvV4jtmnmo4Af3x6U39Xx+FwOHYbnIn0Avbbq4oLTh3LsAp4bFkrN8xyRuJwOIYGnIn0EvapreQ/Tx5DhcCfZ29hjW8P73A4hgCcifQi/u2FI3jp/sMA3MnucDiGBPqMiYjIVSKyWkSeztLGi8g9IjLPfsdZuojIpSIyX0RmiMhJ2TPn2v3zROTcLL1ORGbaM5eKiPRVW3YGh4+rBpyJOByOoYG+1ESuAc4qSPsycF8I4UjgPvsP8EbgSDvOAy4DZTrAxcCpwCnAxZHx2D0fz54rLKtfcMR4ZyIOh2PooM+YSAjhYaChIPls4Fo7vxZ4W5Z+XVA8DowVkQnAG4B7QggNIYT1wD3AWXZtdAjh8RBCAK7L8upXHGGayML17XQF/9qhw+EY3NjdPpH9Qwgr7HwlsL+dHwgsze5bZmnbS19WJL3fMW5EJeOHV9DUEVi1xZ3rDodjcKOqvwoOIQQR2S2iuoich5rJmDBhAvX19WXl09TUVNJ9B44UGlpgwZotjKmoLqusnlBfX19yPfZUDPY2Dvb2gbdxoKJc2rc97G4mskpEJoQQVphJarWlLwcOzu47yNKWA68qSH/Q0g8qcn9RhBAuBy4HmDRpUqirqyur8qW+gBeO62Dm2ibWtFZSW1tbVlk9oa6urk8GwkDCYG/jYG8feBsHKsqlfdvD7jZn3QbECKtzgVuz9A9ZlNZpwEYze90NvF5ExplD/fXA3XatUUROs6isD2V59TsOGqW8eVmjb4HicDgGN/pMExGR61EtYh8RWYZGWX0fuFFEPgosBt5lt98BvAmYDzQBHwYIITSIyLeByXbft0II0Vn/n2gE2AjgTjsGBA4aHZmI+0QcDsfgRp8xkRDCe3u49Noi9wbg/B7yuQq4qkj6FOAlu1LHvkJkIss3dRBCYIAsYXE4HI5eh69Y7wOMrqlg9DChuSPQ4J/NdTgcgxjORPoIY0foZ3MbW52JOByOwQtnIn2EUcPUhLW5zZmIw+EYvHAm0kfYq1q7dnObr1p3OByDF85E+ggjh2nXbnFNxOFwDGI4E+kj7BXNWe2uiTgcjsELZyJ9hJHVrok4HI7BD2cifYS93LHucDiGAJyJ9BG2+kTcnOVwOAYxnIn0EVJ0lmsiDodj8MKZSB9hpJmztniIr8PhGMRwJtJH2MvMWZvbXRNxOByDF85E+ggjq6Mm4kzE4XAMXjgT6SPslTnWg39r3eFwDFI4E+kjVFUIwyuFrgDNHc5EHA7H4IQzkT5EXCvyo0c30NnljMThcAw+OBPpQ5x64HAAZqxuY15Dez/XxuFwOHofzkT6EB89cTSTJtQAsNS/t+5wOAYhnIn0MY7apxpwJuJwOAYnnIn0MQ62760v3ehMxOFwDD44E+ljbGUirok4HI5BiH5hIiLynIjMFJFpIjLF0saLyD0iMs9+x1m6iMilIjJfRGaIyElZPufa/fNE5Nz+aMuOsN9eldRUCutbutjkCw8dDscgQ39qIq8OIZwQQphk/78M3BdCOBK4z/4DvBE40o7zgMtAmQ5wMXAqcApwcWQ8AwkVIhw0uhKAxRs8QsvhcAwuDCRz1tnAtXZ+LfC2LP26oHgcGCsiE4A3APeEEBpCCOuBe4CzdnOdS8Jh49S5vnC9m7QcDsfgQn8xkQD8Q0TqReQ8S9s/hLDCzlcC+9v5gcDS7NllltZT+oBDZCIL1rsm4nA4Bheq+qncV4QQlovIfsA9IvJMfjGEEESk15Z4G6M6D2DChAnU19eXlU9TU1NZzx04ohOA+Q1tZecRUV9fv8t5DHQM9jYO9vaBt3Ggolzatz30CxMJISy339Ui8hfUp7FKRCaEEFaYuWq13b4cODh7/CBLWw68qiD9wR7Kuxy4HGDSpEmhrq6urHqX+wJeVBOoki2s3NIF1cOprS5fAayrq+uTgTCQMNjbONjbB97GgYpyad/2sNvNWSKyl4iMiufA64GngduAGGF1LnCrnd8GfMiitE4DNprZ627g9SIyzhzqr7e0AYfqStlq0rp17pZ+ro3D4XD0HvrDJ7I/8IiITAeeBP4eQrgL+D5wpojMA15n/wHuABYC84ErgP8ECCE0AN8GJtvxLUsbkPjA8aMQ4JY5W3h+kzvYHQ7H4MBuN2eFEBYCLy2Svg54bZH0AJzfQ15XAVf1dh37AsfuO4zTDhrOY8taeHp1Gy8Y1V/uKIfD4eg9DKQQ30GPY/ZVk9bcdW39XBOHw+HoHTgT2Y04au9hAMxd56G+DodjcMCZyG7EIWOqqKkUVmzu5P7n9qzQQIfD4SgGZyK7EVUVstWk9avJjdy7yBmJw+HYs+FMZDfjs6eM5ZwX7wXAZVMa+eGj61nb1NnPtXI4HI7y4ExkN2N0TQXve8lIXnfoCACeWN7K/9y3jtlr3NnucDj2PDgT6QeICJ+sG80lr9+bo/eppqGli4sfbOBPszaxtLGDrtBrO744HA5Hn8IXK/QTRIQXjqnm4leO54anN/PXuVu4cbYetVXC3rWVnHnYCM48rJZhldLf1XU4HI6icE2kn1FdIXzw+FF84bSxHLtvNfuMqKCpI7C0sYOrpm3i/DvX+O6/DodjwMI1kQGC0w8ezukHDyeEQGNrF3PWtvPn2Zt5bmMHP3x0PT983T6MqXGe73A4BhaciQwwiAhjhldy2kGV1L2ghq890MC8hna+fO86XjVxOBtqVzGqK1BZ4SYuh8PR/3AmMoBRXSF86fSxfP9f61mwvsN8JlM46YAa3nhELVUVMKxSOHRcNTXuN3E4HP0AZyIDHONHVPKdV+/N5OdbWLi+g4eWtjF1ZStTV7ZuvWd4pbDfyEpGDatgdI0walgFI4dVMKxSOGh0FSceMIzhVW4KczgcvQ9nInsAhlUKLz94BC8/GM5/04v41s1Psrmti44u2NjSxZLGDpZs7Hl7+XHDKzjxgBqO3LuaiWOqmDCyilHuX3E4HL0AZyJ7GI7cfxSfO3Vst7T1LZ1saOliU2sXm9q62NQa2NTWRUtHYNrKVp7b2MH9zzVz/3PNAAiw1zDhBSOr2Ke2ksoKGFNTwUv2G8ZJE2qoFDeNORyO0uBMZBBg3PBKxg2vLHrtfceNpP75VtY0dTJzdRsNzZ0s2djB5rbAsw3tPNuQwodvn9fE2OEVHDGumrHDKxg/ooKJY6s5fr9hjNiFT/o6HI7BC2cigxyVIpxy4HAA3nyk7tnV3hXY0tbF4o0dbG7ror0LVm/p5KHnmlm5pZMpK1q75TGiSjj5BTXsU1vJUXtXc/Q+wxhRLVS4xuJwDHk4ExmCqK4Qxg6vZGyB9vLOo/diaWMHKzareWxtUyez1rQxd107Dy9p6XZvBVBbLYyqqWCf2krG1FRQWy28cEwV44ZXMmZ4BWNqKhgzvILaKkGc4TgcgxLORBxbEbdieeGY6m7pC9e3s2hDOys3dzJ9VSvLGjtp7Qxsbg9sbu9kxebt70JcVQFjayrYu7aSccMr2GuYMpza6vgr7FVdwV7VwoGjqgi+d5jDscfAmYhjhzhsXDWHjVPG8v7jRgHQ0RVobg9saFWNZVNrFxtau1je2MHG1i4aW7vY2KJpLR2Btc1drG3uKqm8Uff+gxGVgeFVwogqYXjBMaKqgheMUj9QTXbP+BEVHsrscOxmOBNxlIWqCmFUjZqzDh69/WHU2hFY39JJQ3MX61s6aWoPdnRt/d3Srtu9LG/sYFNLB5vKrpea66oqtI7pV4pcS+fVlen+ShEqu/1CZYXob3atogKq7Fr+XFW8135jviOqhdqqCto7uwghuInPMSiwxzMRETkL+DlQCfw2hPD9fq6SowA1VcIBI6s4YOSO7w0hcOiLj+Px+mm0dARaOgLNHYFWO2/pCGxu72KpBQW0dto97YG1TZ10dKmWZLn1abvKxm13IlCE0W3L3Ipdqy5I2xmGV1EhWxlfhWgdKqQ706u0tArBDk3P/xeeVxaku0ly6GCPZiIiUgn8CjgTWAZMFpHbQgiz+7dmjnIhIuw9soYDRu780OwKgU5jIu32q0dhWvdr7Z15mv52Bui0/NIvdHYFukJ2j/12dOXn6bmOLq1Xeyc0d3TR3B5o7tR727s0Uk4xyIjuzXcAuiZJxH7zc5GC//qL2NbiIvar/7vdlz1bUZhnkftjFGGFbFuHbdNKv3+f+dNY37Bhm7bEbe0qrD6F13q+38oobHeP7e3pfhCK98XBR7aw3+jhvfOODXs0EwFOAeaHEBYCiMgNwNmAM5EhiAoRKiqhulIY0d+V2Q7q6up4csqUrQyvkKntiPG1G8PqMCYUGVZXF3T0wPC6At2YXvotxiz1/nTovfG88NrW867s3NoagG5KSdjmpAfsAUx1yfL+rsFO4/ijG52JFOBAYGn2fxlwaj/VxeEoGZUiVFYyaD84VldXx5QpU5SZRKYSElMJBPtl21/UHLY1zdJVaVNGVfhcV37/Dq51hYL8t+bd87XCOncFmDhxIgsXPUcIoVs7Q8H9XYX12s79pbYt1bfYtZ7qD/uOquntV73HM5GSICLnAecBTJgwgfr6+rLyaWpq6s1qlYX6+voBUY++xGBv42BvH2gbm5ubS7o3mrpKujH/7WfUhlXsu9/2NKaeKtp/DWhZMZ/6Fb2b557ORJYDB2f/D7K0bgghXA5cDjBp0qRQV1dXVmHlMp/eRF1d3YCoR19isLdxsLcPvI0DFeXSvu1hTw+qnwwcKSKHisgw4D3Abf1cJ4fD4Rgy2KM1kRBCh4h8GrgbDfG9KoQwq5+r5XA4HEMGezQTAQgh3AHc0d/1cDgcjqGIPd2c5XA4HI5+hDMRh8PhcJQNZyIOh8PhKBvORBwOh8NRNmSobZQmImuAxWU+vk9v1qVMrGVg1KMvMdjbONjbB97GgYq1u/DsISGEfQsThxwT2RWIyJT+rkMIYdJAqEdfYrC3cbC3D7yNAxUhhEm9naebsxwOh8NRNpyJOBwOh6Ns7PGLDXczLu/vChgGSj36EoO9jYO9feBtHBJwn4jD4XA4yoabsxwOh8NRNpyJDDGIyAH9XQdHzxCRQ0tJG8gQkZeJyAD56oejr+FMpASIyO/s9wIRmSAiNfZfsnv2EpF9ReQuETlDRF5rv/k9NSJyQfb/4yJSJyJ/FsXBInKsiNwnIk/bPceLyMV2Pl5ELhKRC0VkdJ5vQX0PyOr48rzOwB0i8kG79k77fZOI/Cpr49kicmpBnm8VkaNE5J0iMqrg2rtF5Esi8l77/4OYv4i8fDv9Wlnw/3OW1+dF5DhLu6ngnh+KyGgRqbZ+WiMiHyi4J7Z9hNV5fMFxWna+t4h8WEQOK1L3mM/eVuYo+/8VEfmevYcLrb4ftE8SDBeRifl7tmdqReQLRfqgkEHcbPlUi8iJIrIfcJOIjLOx8HJ7rsLqdGhhH1tavF4hIqdb+gUFZW1NE5FTRORkOz/G2vVWEakquL8mOz/NxvuDIvKu7LYPAfUiMl1EviMiR4rIVSIyxY7rRWRMbFOROo0QkaMK04tBRF4kIleIyP0i8oT93l9wzxgReZ29g2JM+t+KpJ1sed8nIrNF5FU2Tr6Z1fEaEfk/0XlcaemVIvIHsblVKkRk3+y8RkReYe/gHnuH+2TXj8jGwaH2+3I7Ds/e/ycKyqiQjG70GkIIfuzgAOYC1wONwIPAFuBp9HO8C9EFPA1AB/oVyrX2uwH4LXAVsAb9GmYHMB9YYdfjM63APKAJ/Xb8U+j3Um6z5zZkz7dn503AZuBx4FlgtdVlA/CYXW8D1lndV1l5LUCnHV3220z2hVIrZ7NdD8AmK7PT8voQcJ31Q5sdr7D+ifXbDPzR6tJq98wG1tv5Rruvzeq63spZCTxp1/5s59OtTs1ZH7RZff5k7X7cylli/5/P8g+Wf2xPu5XZZcdJ1pbPAjPR931n1j+tWX+12/XYhtXW1i1ZHy0B7rUyW7L6Lrd3u97yXGDPrrTr+ftttfZuIL37hVb/WM5UYDw6JpdafZqyNnbab7Cy11s7O+yI9YhjscveQSzjeXt/cSw2Aq+xeq/JnmuyfmgB/p/Vu8vy7gLusfq12zMtWV2bSeO5Mys7H4+d9swS679Y50ez/vsH8GvgJuAvdH/3ndbWh6wO64BL7Z7H0UXIHdZHsa+XZH3Sio6pa6ztcSzEa/PRcTjZ2nko+o2jKeh4mml90Gz1jfWPfR3L6bT0Lrq3vyV75032Pjbae98IPGJtbQS+lPXX39F5Gt/7f/UqfexvAr0nHCjRW5YNmMC2g7swLRTc31JwLR8kcVLFMs5CGVcr8IWCwboZeKagzK4iv5EIxQkUiVskJvnkX1RQn84ieRZrc+EzsS3tPTzTVfD8XHTi5emRKawF5hQ893R2XztKWOP1nLnGIxLQLpTAxHIf6KFtPdW7p3dcrG92ZnwUHpHR5H26xc6nZfc9VXDtOaCeNI56aks+hvL0yFjXlVjPdpTwbbF6bCIx04esHQsK6tyFCk499XWHPd9MItxxfMV32UTPdWopuF5srsZxEuvdWXBP4XztQhlKfBexfzdnafHdbsjOYx4b0Tm8ozHyZJF+aUfnaCyzkKHm9Y1MbFP2bBz7nahw+TOU6VQDM5yJ7H4mMtl+16CE71mU238XmIhKGIvRSbgRndS5lNxu6XEyPI9qHXFQ9zQxumzAr7a85tvvFnSiLbYBnWsI+bNxAG8hEdGoDSzNBvP6bPB1WXlxALaj0lccrJEpNZMkzc3Z4M8nUtSgYp3jpMrrFhnH5uxaTCucgMUYZ7B3EbWAKOXlk3Ijqg3GPrrE3lnMp9PeXSERaLR3eY319Qy6E5rIiLtQBteFanqt9my8L77jOZYWNanYxnhflOxju/OyonbbTiJwsY3NlldMewx4paXPYlui1dOYi+WuojuBDOh4iWMp1m0zSUNry57Nx37IrkUtYzXdtfDCozO7f7Hl14QS9LxvmrN+fi5r5zV2bR7wi6yexebXWuAbRa61FfwW9l8XOi+asrziHN9U8GycU3HMxHkTgBajLV2oELmgyDtqBT5ifduWtbUpyyd/X8U0uciEG+llJuI+kdKwRUT2RifvIajpYDjwFuCtds9UdN3NFSiB34K+7E3oRJ5MeplTgQmAoMQ9ShoNdkTpI/7uY3kfhkoSI4ADgRdaPf6GDpwPo6aOLpRIvgUlfC2odrMANa8ISRoDOAcd3JVZnebZefRbCGmigGpnkaBFZrYGZZBdqET6EbprPt8Bfo9OoirLKzKuWuBbwJst7+dRswTA/6FE/qfoRAD4KDq5tqAmtCVAjfXPBpKUWQXsBbyfRHA+h5oanrJ8O1CpOZr0riRJzk9aeQcCh1s/tNhRY/0T/wPsBwxDtbvIhNdYH+R2/pXoO7rMrmHtGWt5dqIEQ+w3SvsVWRtXW/6/tHpH1ALftGdfbGk5o7qMRICiyYzsd5Fdm2P/IxMDNftEgjXM6jQly+snVrcNlt+/AyfbsyPsvn1Qc2grSUhpBf5gecT3tACda8HavF/WxsiwRtn5QVk/vho1fU4APmj9udSuPWttedbuHwF8za6tJzGF+A5i3+UClFgeo9Fx14rOu6/a9cX2+3N7DtScBPBGVBBtQcfuMBGJ7/lAdI5HwS6iyvLaz/rhhXZ/FJDWkd5nNCW3o+a8KBDeg86D40hzuHfQ31L+nnCgtvJ/2ctYTrJ3/xYd8D9AidRGO7aQJkhP5qBcGooTNkrFHdl5Azrgn7K0FrpLR4XSeWfBbyw/2p3jJHm2oG6FJqw4maPUXFjvdpQx/hMdqFELK5Tmd+XI/UWRgfUkMeb9FtsfTYixzZFxRvNWlBhzs8COJPYtRdLaC/KJ6Ut6yCPv87bsnlyqvBUlxFFqbSbZ0Fvp/k6mo+Ozme71WG/5rwRuzOpaTGssfGe5dhE1ye2ZKvM++7v1/WfQsbHAnnva6rkEHe9xLHdY3Vf0UJdic6bw3XeizCz+31Dk/p7eQUDnWRwz7eg83wzcggpgb0f9LIusDU2oEBA1yrz9m7K88/bE+dtKYmLF6hfziBpnKyqIRqFpVcEzjdlzhe2LPrUme/YM4MjepI++2LBEWJTKbNSJ145KAq9GzVmtqEPvelSq+a1dGw6chr7cGvSlRidpNSopddk1QSfRGHRA3wO8HtgXHQBj0Yk3BfgV8CZ0QIxHJZNm4HuoqeYs1HxzACr1vAAd+HVWl5HAuehAPhd4FSotdlqdo1S9EHWK74VKne9CP0X8EVQiFavTRtQZnUfytFle0en9JsunDdUsbkc1so+iJodLUc3ji8AxWT4H2XMBlV4PB8ZZnzTY/1pU+mtGJcul9j6+j0qUz1sdlqLM/iSUsB1qbYhSXRMqXVZYXhutr4ajhLjV3s9G4H7gYeAI4CJ7tgM1JTVbX/8JuBB911vQ9/yU5Xe0/Y/9fIC9p8etrQejY+kTqDbxT+uXEaiz/yR07AnJKS2oBnmc9c1eKIHZgppCz0TH5sn27LN2Hs2zB9gzW6xe+6LvfaG1ez9Uux5m5yNQLfgV6LhYi47HacAngb3t3URGfgnwKetjsTodSyLec4EXWR8dQ3JWX4CO/wutDVGoEFQTqUSFmPGo1rfc+iyg8/XHwNtQTfCF1kcnWT3uszyjOXV/a9NB9g5/hjLDKpJ581bg09ZX662fAjq+pqPzL9ZvOUr0T7Tn9yWNtzhfNlhdzkPH0oHo2D3a6gk6zjvQsRmtA22WRys6n+60/D+Cjp9qEt15CKVFjwFjQgh19Bb6W8rfUw7gdOB39uL+Ysc01DQyI7tvs/120t0uHo+Vdu0f6MT6geW9Hh2gASWIXyJFA0UpI0pteXouHc9ECdwL0Um11OoyFZ3w7wG+TnKiTkeZQLQZR0l2Osl/kKvxnegkjVE1y6yuCy19seUXI8Qa7LmrUIK4BTWnxXasJ0nMN9h9V6EE41Oo5NeKTs4oqW6wPFvQCfoUas6J5p6FpCifruz+20j29S5Ui2qwPluHMraLUHPbzZZXNDk022/Ms5lkQuhAiecjlld8L632PlusrKkkiTmaoRbZ+XrL66NoJFqUQBeTtKm9LP8O4C67/6t23yH2DteiJr+NKMHO+yG+26iNbUHHZzSJxN/n7R1GJv0p4K+kcRtt8h0o0V9hbT0rK6NQO47j4YfWb+vt3Z1L0ig2ogEjHShDihJ+V1ZudLzPsvfcio7BdmtPi+X9CMoYL0Ln0UK7Z6b105WkiLRbszrnPoVoEoptiNrfcptTc0i+r+et7DPsaEKZ03S79wfZ829DmcWT6JhosPOoHcdoyFnW5ttJPr7oA1pL8oNtJmlyuUadt6cd+AC6RcsUYFav0sb+Js57woEyjwUk+/lm0qSNJp+rSOp+DJ+NL38zShjbbdDGAdpqeX6SFOIaGc0zlvc6VHqIZrToEG9CiVOjHfmgiYxrOkq0W+03SteBRMhy5+4dBc/nx4MF/zvobm5ZRgp5XUp3FT+PTMvrGPurwybNF1En518t7bV0jyjbnnkjRrJE5+Zyq8OT6ET9e9ZHDagGESdgZJhLSMQsvsMYuryKFB6dmydyk1g7KaJsFokoLrF3uhyVcnOzVaEDNQ/xDQX35mVHYhmJROyjv2T35f2Wm7pyJ3wTOr4CKqFvJDGMLpIg0I4yj9wE15zVK/oG2iz9AySiXsypnY+jKBjFcPRFdB+DrSQzU095xfp0oHMmj06K7W7M3nXs05bsehSuGujOvArH2uKszHxcx/y6CsrIn4/jszDPeL4JnT9LrOzHUT/rapRZtZKYfnwvm9GIwyhIvT9rZxxj11rb1gGnOxPZ/UxkDqrOT0RNVoegIZWXoc7s/0DVxf9AVe5L7YVPJxHWqElEaTWPPIo+iBhl1WDnz9vzv7S84jqCnDjHyREn2lxUKnsejdCJdtRIOKLZ5qtWl6kosQs2EOcD/0N3YraEFE12L0pMVwIXk5zYq+kuicYJ2GR9FlBCv4buxLeQEKwjTewZWX75OoYtdJcgG1BTY054IxGJ0WsPZPe3WHuivbiQ0LajpoENqOTWgUrcv7Bri1Ft4F323lda2grUfFIo2RYy0Ly9Xy1Iiwwx3rspa2Mx5hnzvTJ7Jr67zaR1OIVaQk64Yn9H2/pn2JbQxWda2XbstqHMIvrJNqEmpGjeWUlidI/ae93L3tlqNJpqLToeuwryj+N9LUlT30RaT7SApNXGtq2zPFaR/C6x3j0xoThmFqHjPQpHc4C7s3cSIxGjBrKWbfsxCkYd2f/IpOKYjn32uNGYX6HzcCUqSP3G8p5hZc4nMadNpPF9PclfGwrK24xq+GtR02sjcEev08f+JtB7woGaGCYUpE0r+D8btWlPR22ze1tatKUHuktSjag6/++oBL7IJkRc8BSdxCG7Pw8dXEIKxZyK2syXoOadGC3yCbv2BZI5ZgFKWL6BEsJrbYDGSZaHDa7LBn8ksmLlzMvaHaXuu0mM4zpre721LUrzkaG9m2ROuh2dkIfbpLnCynyIJC1HbSlO5NhP61FJeiNK9LeQ1jA8ixL2tSQJPTKxBVa/G0gh1CutL063POZm7Y+MPhKcZlSz2GT5R0kxEuu1dHesdqCMK5rBotQYnbMxrR1lXNeThIr4fBfqe5pj5TxnfRqjv6aTJPc4bmJ/P2f/V6JmwqhpFRKe+J6vQKXgZjQCsd3ex32kRW9t1r+jUcYTifpSEjP5DUrAom8g9tcy1Gf0EpLP5h2k8NUuK2cKiUHl2tSSgv7NjydQJjXPnolt3UAKtf2bpX+WbQNVojUhhtc3kcZxDJypt34+ye5dgzLOrowmjLBno/DXRRKoYqBCGzrmo7DQhc7dYqa8VdYXG0jjcS7dhZ/O7Fr0h9WjNKzB6vkBZyK7j3n8DbWlP2Av7277fxtKoN6U3RsndyTgC23wrCURtxVoqN6pwPH2TFy9HQfuesv/l/bSf2HHRQUDpAVlDj8kEek4QYodm9CJewuJUOQTMErAbShzaUGl/TxOvzDabJPVsdnO88VeuT22K7u32KSP5cdnnrF6/I0kgXeRpMQoZc1D7c25BhLV+JwAd1nf/CirY5RKc0my8Ih+jT8V1DMUlBfXiER/Q7w2H2XSDShzb0cJQaGpJRSc51paNFtEE8aUrG2dll/UbiORiGadBpToR8aeM8NmlODPQJ3r7ydJu/F9z87uX4M6k1dY3/+Qbdf2ROf5ZlRjnZy9q80kTSdncrkUH8vNzZ9R04n+p3+QtIYVdq0BHdsbSCa19Vm/LiJpOTFtvT0TtbXYliikFWpbz5KYadSY4zuPWl/0TS4iWREiE8jHaJyry63sOMca0bn/I3RsF46PyOziPP2H1SvWN+YTx0W8FgWHG1C6M92ZyO5jIq9EI5eesPNXZmmRoEdn1yb7vcye/R2quv/aBtVvbMAstP+R8C9CHfRT0YiSjVn5WzUgkknmYdTOv4EkocaJuYFkXtkAnI0SyV+gEt+zpHUo96JE4lorZzJKDDtR5rQGZZr/zAZwlJifs/ImW5656h4HfCRyDahE+1JUUj7R8l+EEsT5qC+mCXVqf4JEeKIPKg9h3ECavBuz9P1t4jQBrdZncRuIJcDr0Ii5BfY+v2nv7lskU9x8kk1/gfXdcns/d6GM4G2ofyWua1hG98V/0Xy22fL4X7o7PhvpHgod6x8J32p7NvrAIhN5NvufE8P4G4nHY2xLoCORjo72RroTpsYsPfqgCt9pG0kLbEWJZK5VL7Z3/Tug2fp/vNVrmrX/OtI6hpXoOFpv1x+0vGfT3fQW39+n0TDbZ0iCS6FQFTXW6D+JzDrOjfg/94vkzHoTSrwvJgkvkQFsJpmimtF502L1jc+3oWMr15jyvgukAICFbKvhNpECBr5kdfgZOu6msu2K/VxL3VyQnvvb2tCovPehpi9nIv3ATKYWSZthk+RUMgaTXZ+Dfa/F/g9Hif8DaPTPVcAauzYNJUYX2kCZjxL0efb/GRsUUQuaihK/nIB02AD9FerEX2n3NKDE+EJ79jPo5K2xcl9l90Y1OqDmqVUow5pPIkCRCH0e2GR1jxM3EqoNpIkXpeeoqbSTTEA5YcvNEg3ZBPg0SlSjzyYS9eUkk0wXyhCPs3ZFKfxauvtm1pNMWQ10jzgLNsFOtnb/nDTJYwBE9Dt1Zb/rUV9EB8oIo2kxJ1A5kYgTvMXqsJbu6z/aszLjM50kKTvPYzPKoNajzGoR3RdZRoaTa0a5aTLmHd9NJxo19Hv0/ceItAetrxZneTeTGHYLOr7mAO8lvfulJM0sMsALLO+ZqGYd+2AtKrBESfpOEhONdV9H90CBaO76M2lhb2SETdYX87P+KiTs7eiciAwpBmZcToqWy32Xjdn5DGvD02gofs6oF5HMqRtImuIMko8l+l5WAx02j/6JEvjoRP+X1fu7JN/OJSjz/qH18xzr52eyd9tp96wiBe60ooyo2vr/id6kj75OZDsQkU8B/4muIl2QXRqFEt6RaDz5NDQG+9EQwmvt2T8Dnw0hrMj+N6M+kOctzy50Ffdw1Jm90NIr0UE4giRhtFv6CJQBtNj5THTAnILGjNfYr9hzFVbnDfY7xn6HoYNL0MFahU6kzejmen9EmdFBKDGvQxllI7ouoAKdLKOs/H3pvlfQONJ6mBpUC5lobai1vovSW5vVKWofL7J7bkPXl7RZWwNKGA5GJ88+KIE9wZ7vIq37aLM2xr7biBKrYWg470vR1cPtqP9qKUo8TiCtN2m1++daeztQja4ndKImloPsXEj934ZGhN0ATELHwMF2XQry6cqei8SJrA+W0n31dlxvMhddCxHfR/Sz7I8SmmNI2tAYK6Md1bLejGpYb8n6DuuDGsurJntmAfo+Y9kVKGE8CH3nkFb1F7Yvtmst2veB9N7E+q6yh2darZz90XnTgY6t/dA5ebDVK0bnHZ493476JD6Q1a/C6tthde2wa1WkeRHLFiu/mjSuhlke69G+HWb3Vdv/4aQ5UYEKZmeiDPOQHtoYBZURdl5p6VjfPIOur4mmvFo7osCzmrS+qt2e+z/L59+AM0MIK4uUXR76W8ofyAfbRmTFYzxKvIdjDnbUFHULPftRNtrvDJThfMVe+DP2fLS5HpGV83R2fhrJH9CJajU3o1LJhegEehYdbCut7Bj98sosn+NJ+/VcwrYrbp+zOq4lmWZWZ/fltt1WUlx7oa8j/t+Emo7yKKFFWV63kSTwuda2aSQfUhvJwb0JZW4PW5uXWT/MtTavIzmS811Sm+y+FpR53IUS859lbWtCie8DVk4rylRnoCbCq+1Ybf2+Fg2IWIEShM9aW6IZ5C8kzS7XSGJbW0nO9Wia6cmnFU2JjdbOp0lrDHLfVsx7GurPis7kqH39E/W1/RIdp+2o+eWzVvYUq+MfsvcatcLoB4jtW4OOsbg7Q6zDbOuby4G32zhbb310k/VxjGxagK6kb7X3cgg6NpajzuCpJJv+DNJ6mBbSXMj7NB/Ha+nux4v9F/0t0ezVkD0TNdcYFBFI2k2X1esSa3t0sC+ku9lxe0c070btLPqcFpI09i0kbfVEdO6uJjGpDtK2SpNJ4/1Ctg1tbrR3GjdtnY9aJ/69V+lkfxPqPfUgbco4Daix81n07EeZYwOvEbUNnws8l+X3VHb+KZRJbbHJM8MGzyLU3HAIysBGo2aUaHp6J2p+qEIls3UoUdxg9ZyWDab3osToSyhxbEDDlQ8pOP4HncSRCUTzykzSxpMLUal+Pkn1jo7r50lx/1ts4kxFCW6jlX8zOlkftnvOorupKRKHSHzbSAvGLkbNWc9YPfItZ9ZZHreQJnm0TzeSHJ+tqKllOSrVXokyq5uBI62c/0WFioWkxZnRXLMZZRq5zb0ZjTqL/o+1pFDvx+zZG0nRZNGvcIYdkaAEks8kErUn7B3EqJ8fodpJzhDbs2cj8elAGWIesbQu65fJ6NqcvVB/3k32zH0kwjTb7o1mko0kf0RcTLrS6nQXaotfgI6DDdbOvwEfRxdXPk9igFHrjmazyJi+Zm1bg5qPulCTahs63pba849ZPe5GmehC1Nw1j6RxNVpet1jeL8rKiut6ojkqmkI7UEElRiLebfVYYn2zAR270Ud3NynSMWdOhcwmMo9LrZy16PhbY3XoQqMof4qOwRgEEsPJF2b1Ow8dqz+2spegtGGF1X0tqgHVUhBZ6kyk/5jIX1BzzzdsAN1KFoNNgR8F+BhplXiccD8FRtj18dm9xTSgtcAbsnv2tTK/SYovX0lasNVJcuDNRm2tV6AmjWNs4N5pE3AZykSWAJdY/p9Go5Lmo0QrRiDlPpjc2boBJQgNdsSJHSWoSNAiM4grjXNNJhK3OcASq0ckMKFIHgFlpivoThgjMY/qfnTORyfy06i0fY31zV9I2sAyVGL/JzqRr0eJwnySnX6tPRcd0bl2tpHu/pZIYNdmfRbbs5zuBD/2w4qs3jH/zaS1ELGdUTv7K/BfWf0jAVpvdbydHUehBbv3oqzOq7J6RYf4EyhRiu9tI6q9Ri1qESrIdKICTDEttacj3psHKmwh7UC9ERWEOlCGF6Pd5lranVk+sU/jOOxECf/z6Pt/iBRBF/t5XlaXpaSNNZeStMAm0lyJTv7CPlqWvafc57eZ7tppPKJW/hzJv3OXXfssupZoGsnE9g30Wz4fQgW5GKAT+y2WGZlanBMLbU65Y32gHaim8VbUHlpMi5hhL/kRdJJ+F7U/b8AiiUooIw6IPCqlC5VafoL6Vr5jk+MhG7CT7d7WLJ9K4A92vgndBuVQO75Gcph/EQ0aqLL/11pZ96FS5F9Rae5mVNKMETALUBU6TuJoBnvW6v4USV2PEzWuHG8jSe4b7HqMBGq3su60Z15lffxnlIC1Wj+vsgm43vJ7CjWN/AolAivsiGauJlIUWIOVuw4lNItQh3sNaaLHAIbIUCMzyBlJJHiBZHbpKrgnEro8qGA9KmWuJq0ujgv2tmT35cEMpRDlYP3fimqd0ZkeF+1daufxvX3Eyvwk3YMCgvX9xSRnfAzt/pTl+zy66HYmqlE+ZOfT0MW5rWhQyXySWfVidNxssDyeobspcjOqZVzNjlfAxzrGfm0lmR5jVFVcNV74zqIgk4frft7qWIeOpVeikX4zrC4dJI3sEevDPBqrkInWF6TlAlLUYqOWFxl7rjGvIu2UkQsxm7M8I2OLJrfF1q4GNFrUmchAPujZj3KfDaDppK2o7wJes4P8bs6YyIM2IH6LajE/RR3xd6PM4K2oY/Rwu3clKm3vV5DnIyjDa6G7BjQeC88sUo/pqKnjt6gp7BxUYnqAJHHltvEtNhnuJ60xaLK83mWD+gl77jk0HPkzNjH+m6Smx3zbUIJ6DlBv+USm9GUrd3Y2qQrXGuT25tw23Uky132bZN5pJy0im4VKl4+hkuSjpG9iBJJW0opqNTHPOIGjrTpGqz2JmszWkPxKHda+c1GfxQyUQP8SZZ77oYR4PRoy/TPUpNNMiiZaYPWIZpnIqCLTDnT3Ly0jSc7TSdFtVXY997fkJsWc8XVYn4wjEcGHSZFbkSG0o8xjASoAzEPnwEl2nIL6/VaQmHIe6vshEtON+0o9hPpeoqb5COo4XkV3wh3DaqNf4yG75xbSFj3RNJaHynahWvGTqPl1po27S60u0+wd5lpL4fO5thH7K9YjtqeZ5PeIZtLIxBaSPhrXgfo+voDO96+jguP30DE2397jW6zPDyFFQ8Zos0br+x/2Fs3z6KzdBNFvpl+DmknqQwgd239i63PNKFO4Cx0UdSgBBCCE0CAin0Md7DehK8Er0AEopIHcrLeH0SJyHbpD6Gh0x9A5lt0haPjfW4rUYyoqVR+EEs1j0UimNegkexkpYmyEPfY8OniPJkX1PEda0R+jdiJhuBd4RwjhUOuvN6PE4yvWjsWWxz5odJegDHklGpVUS4oWKpSg21AtLIb7bkY3qozMtMbq3YYS8EaSzfwMVAP6PWpKWGd1iE7bDqvH4Vm/xzpUkaTN84DbQgjrRWQuSvRWo0y5BmXQ61FCsQANOX7UftehEUkxMq/W6joNHRufRInH59D1FNV2/Rn0vW60/p2EMu9HUOIzyo4YdVSBCjsvIUWO1ZAipmLbYp/WkAjnKNIivFbSLreHWF4xD0hm0M2kyLdZqPbSipopl6Jm26rsnhg8shfKWDdYX8xHI/miUzzWcSo6Vj+Azo+1lv8+1ncT0Z0m4v1QPJosXi98t/m1+OxjaKDNfNQ5/jQaNTYenYeVdjRbn8X6RmYfx2knGlV1NjoeJ6Bz4GDUlC3oOx9m14/K+mk4KcpuMfpOT0XnbAO640QeuVY++ltyHyoHKjEdV8Zzy0jfXugirYZfRLJxzkUn7wJ0kkX7+I9QKfYHBXnGyJTcLBbPG3uox2tQYvggydTwSxu8z5K2tvgTaT1HA0kiWm//n7Zrz6AEZDrd1fsoVTajxDz6TTajTGyJXT/H2nc3SjT/TDKJXWRl3kT6ANj1KCFdihLTe0jf5o5mtLiq+pWk4Iijrf3LUWk0Nys8TPctQK5ABYUYMbPK6nsOsKigPx9BzThRiozmtIaC85mkgIyArtA/BGUGN2fvba317S3W183Wtxvs2jMoIf0USlius2fvRSXVaeiC2N+T9o5aYWWuJq2Sn4EKLNEHEMtvK/h9K8oUZqDmz1WoCbfe8v4ZqnXdbG37Jmmc/83aMBMNFmlHCeHeJCf7jKwOC1FB4h5UqPk6aXzHen/D+vk5e78bUGJfuEgvahB/s3otJfkoPmd9U4X6OH9Giih7BA2+iGajKFysI42vmJb7SnKzZNQcN5MWSy4hhaevt3vuJa0ZW2V5PUAKnLgXFd6WoYzsanRcnJaNv6N7i7a5JtLHEJGZ6ACpQqMnFpLWZ4QQwvE7eH5qCOEkEbkMODeEUFvknkdJmsAwdGJF6bIKlWxuBv4ZQvh59txZ6IR6DSrdzEPtpZ8tUsY7UYnoJpT47YsShAY0wOD16AQaiUpDs1ApPjqjAV4RQlgnIvWoRvYxq99sVIq/DnX6749+T+Gfdn2DPT8cJSr/HUKYUFC/Gehq8ptIEtlwlIhUkuL5K1Dp7gHUDPY4SpDHoAQhkNZXTEC1KUG1lvtRrWpflIEcY+0/FJ3AX0El8++RpPYO0nqRTaT1O+tQE1AFGqV1Jkr8/o4y6rkkbXFfK/uv1o5/QzXSuFZijdUVukvLC61+61EpdJS1ZySqdVVamacAo0MIrxGR4ajp8WOoqTRqEH9HhYUXoAxiL9L6nWiOietNRqCRQe8h7St2MPoen0Yj+YYDL0dNiAdZPUdgX/tDJebICFbb+3ohShQ/Ymn7k7YQOYzEwBaimkC+VmqW9dHd1ven2D2zrS87SRp0RCTsTQBBtfg1aJj8tcBXQgiTbex1hRBOEJGF1s7jSRpFXK8U6xKsHmegiwrXoYtlL0PHfS3KzB8OIVwpIq/M6vQ70hdDsbp/z47zUJ/HeNRk/BvUVNhI+hQD1pYGegv9LaEP9oNtQ2a7HSU8H+2Ym+jZiRjNJd9AJaepKPF+C2oOWodKcnFNysvQybOOFAQQJaUtPdRjBmm1bRMqfTWRiMJqkm05OpWjnT/at6OPZCPKsB5HtacTgQV5WT3UIQYtdJICFmZb38TvPLwRJZSLUQJ2KSqRz0altDz8ONZxNslf0kFyri5GCfyNlv4ESWvKpfBot4/27DV03zDwYZSQvwc1Nz6F+k6eRxnn7CyP3IEfJen2rA9iwMMw0mdoZ9n9fyZJwe2oVvhNe09HWH0uQKXS6EPoIjlgP275XYcStGhPD6g0/ixptfUzdA+njlJ8PG9EbfexHWtIQRBxDG0gbT//FEpYz0HNefkY30TatqSDtFVK9CPMRSX2K0gbFG5C3/UqVFi4PntXsa9zU2f0o8Uos9iHKy2/+0nRWDOAX9v7OAwV0GbZ/6gpR40yjos4R6OfKfpGYpBDnCdxTueO+ZjHalRQmY7O9W9Y+64krZ+J43gVKSw/BoNsIbNg9NbhmsgeDBG5uEjyi1Di90FUim1BHZqXhBBW23NPkHZMnYJK0i0okftiCOGcImU9hUr6X0In7a2odFqJSlPHotJXQCfzp1DTy1WoP+EP6DqUd6Mr3g9BV+8fTlpl24hKy/8KIXzAyj0pq8Yoe/aLpFXq16Aa3t4oQQKV4Nda+ytRIvA+q1cLaob7T5QALLJ7JpBs70ejUWpbpTURWU9akQ3KBN6RldFoz96BamVR+3uPvYv3ohrEfai/oQaVNu+2fptA0iAEfScnhhBeShGYxBvXPpyAMpbVqHYT/RKrray9QggiIq2oFvJH1H8w3Z69CdXwGoD9QwhVVsbfUG3rMNTvJaiWNwX4VQjhFrvvOyhTe49Vbxhqvv0uKniMIK3AH5v1c4wyi36K91r/1KKaTuyLaD4dYfl9B9Ump6GaUWSQnaSvYIodTagG92mUUb3P8r0M1Y4q0ejGT6Lj+gZUgsfK3JDVW4DZoYj1QES+j86PFuvjve2ZKORF38cq9AuSkZFVo8S+GhU2jgohHC4ih6AMox59xwB/DyG8xObEv1na+SGEF4nIdNSM+0d0Xv/e2vSRvJ4hhIcK677L6G9J3Y++OdCVtQ+jduJvoCaruCblCfttt3s2oYP7NegkKZbf7ejEXYhOjjEos5qCSlEbUEn2ApRx/A4lKtFR+y7gx1l+Y+hhN4CCch/IjntQRnBUdn0y267un2W/E1FiOTa2G9XOrrZ2r0IZ4L9i2XbtmCLtv4buGkI7aSVzXLOwEjVztFr7F5Ic9TOsjmvQCX61HY+SpOfFdt8DsZ3W118pUp+R2fnepPUQUVqPEuxmy/MOUpj1alJAwmx0FfPlKFFeB5xt+S4ifW5gkR1bLJ//Q7W8WO4lqBluprVrnd23EWXaD9s42IjuGPwcyvwrUEL7eitzGcrYZqAmr/nWz3uhmtsykob0IKq5zMr6YhYatRjDt9fY72rg09l9N5Iio2II9ZOoLyRqAbdZXa4lfRf+h6jgUI0yvDXY1uro+DnS2r8ZDZSIjPJOS4trXppJvr8fWrveAxyc1TGGUccxFxlPHE/LSXvsNVt/zy94boq9q8stzyPp5RXrrokMAojIA6TokOGotDwcNRdVorbk0cABIYQaEbkJnWh3oFLcn1AbcSW6+r6SAohILRo5MxM1kbzSzg/HIlFCCIfavVPRwboXSsyiFBpX8IIS2QPIIlxCCG8to+0PousS7gnqOzoN1YDGW7sb0EkFSmz3RiXv6JgFeCCEUG/5zbE2LSLzXaGS33tRgthO2p+sCyVuL0SJ4fOoD+Ne9LskK1DHP6gWVhVC+N+CctpQSXVflLCMsOfuQM2RfwwhXFDQ7n1Rpn0+qs3shZoFm1AJ+36r2zw0dHap1fnlaGRSNcln83dLH4MytINJ9vMYYTXR+vEha+ufUQL2XnQszCc5rt9geS1FI6hGWjn/RP1P30fXWvzc+ut2lKi/GR2Pjej4raT73m/zUa2t0dpVb3kdF0L4h/XLapRQz0I1jwNQAWYFyhS2oFusvJP0wap9rK9WWtpYq3+1lR19WWuBYSGEg0Tk7agm/VdUM/qm3fsTq/M4y3M024/2ioih0utR5hOFjRord4LVI9eCfm95jESZ3dOoBltr5+9Cx+EEYHUI4QU2jx8NIZzQQ512GlU7vsWxB+CL2fkN6GQbjQ6uF6GT4yp0EoOquT9HB/sy0oZ6s1GJexuEEJpQWzoicgw6+UaiE+4SYLyIXGrldoQQRonIIro7erH/B6ID/J0kQl4UIrI36sh/hT37CPCtEMI6u+VClDgcLiL/QgnxO9BIpINR4vxSlKCNsPqeQXJMhhDCj7Miz+qh/RtF5BqUCH6AtIXHONJmhZ2oRtNJCmG+NYSw2NryM1Qy/N+Cckahpq9NaP8NQ01IE1ECubJIlW5DJecYMScowa4lrdX4D5JEvhEL7bQ6H4oS7ZrsvlWW34l2xH7/YwihUUTegBKxlwO/CyH8F3CtiExEF3O+kmRmOTyE8JyNgSqUKbwEfYdfQ7+F8UVrbxtKBOdZH9yEOprPsXqNsnbdb+VfbW15D0q8p4jIeNTUujfKFA5AiXyztfcKdLyPQpncL9HxfL+V34IywaNQxn6cXbvJ+nkE6XsfWN/9GfUvgmq4wfJfb2ljrD+rSZsjHoAyiafRLYVqSXOgFn3vIy3tg6hpbTbJrPd5NPjlamNkE6wPPoNqSv9C5/ePSMLUWusvQghNItITUysP/W128aN3D5KpagnZivOCe/a13y/2dE8J5bwLlcLaUTW60QbyOcA4u+d4NJLnx6gJ4xyUgDQAJ5VYzj32zKF2fBW4t+CeKtQn8xKg2tKmZtfHkL5jv5QkbY+PR4l1uRFlHu9Hv01yLWqCiiGbs1DtoRWVAI8sksfM7PxydNLfZc9chzK8Q7F1HdupyzKStrSQtO3FdMxsY/3yGKrxrEO1r1mksNFpqBZ6HGqG/BPKBI9CNaDn0P2tlqJRPjeRJOZY7lrS51sbLO0plAA/gDK452183IISwRFkq6ZRM+M8lFAejmrQbVbGo3b+NKr5bra2xzVD0cwWTYFTUaZ4iPXjc6TFqbXxHaDCQAyljQtbc2f2RtLWJcvs+oOkTxM8hTKHfa3+w9FxsZQUjh3zD9mRry2Kac3Wvm+hjHwaMMXqOh1lVP9D2tfrWbv2AuvzWdYH0XwaFzEuRf08P8Pmg/Xvk71Kc/qb6PnRCy8xI4ZomN/vbFKdFI+C+59FJcGPYv6CMsqMg/KPaJjhT1Di9KilX4VK3dfaQL8aNVs8QLIBv6ynOmblPF0kLSfE7wRG2flXUUJ1kk2+U1DJ9AJUmttI2lcqTshNlBitYnnEjTc/hhKjaKduQTW9H5E+S3o/cH/2/P4Fdb/L+ugam/gvz97jdCMORZkcakJ5E/CZLG0uMCb7P8bSplt/vxrVFubZUQM8aPc+ZcfHSH6OfC1DA0oUP4YS6GmoRnmrjaer7fxWElNrIn218xEr/3coEV5rY+QqlDivLRgP0VdwjfXxWsvnZ5b/auAT+XhEmcgZKKN/ztrRjEr0s0n7sV2DEtsYxddsR1xHtI70ldEOu+dpy/dz9k4qLa9aVLu4C7UC/BjVXNagQsGSLP8Y2ReKHO1osMZa0lqPB1ErwjPo3NmCMtqnsnbPIEWetfaQd2SMcbHvq3uV/vQ3AfSjF15ikkIWopO9BSUID9hxf5FnTkH9IgttgO7Ud5dtUr0PNYOdkx1ftd/Z2b1P2e/37Jnvkbat6LGO9sxPSQ76CrZ10M+w31dYPm9GJcOTSZshrjcici9qQ19pffYP4Oc70ebfo2anO4zYfIcU1rsIZR6fJX0QaDVq6huFLl6cjK71yfMUVIOKhKaVtEHnRnoIySQxw7idS7O1dQ1qyrrG3u3HrNwf5X1G+r7LfEubTdqZeTjKJN5P+sTBSaQAhb2B47P8FqDS/3/YM5OtbxdbnT6DEtMHSRL+N7NnbiHtmfUI6auJDaRw6UZgVVbm6ahw8CGS1vQe0jYzMUrp3TYeDkaZ8svt+TbS55Y7USf1cygz2GJtmGj1+qJdW4BqH59FtbKbrG3VZMIOqmk9Tfet6SPziNvBXGrlXEoKhFhhzxyPRmZdbu/yadQx/6zlHQW4vUgBCL8iffphnfXpBdn7ejNq3tun1+lPfxNAP3bh5SmhPCD7f64NzF9SuolmH2z18k6UeylqD55hk2x2wXEVGrt+jN1fGNk1nx7WghQpK9cc4mSLGkQjBQzKzmPau9AggzFGHDagxHCxXa9GTSf/W2Jd5pDWLeTrDHLpMq6r+B5ptXSULt+4nbw3s62kurWdPTwzHmVoT6OmxZut3/+GLgx9gd33PtImhzFiKq5zecj6YCMqseefOIhmoEYjQhVkmiNqEvokZpoiaVF7k6TxZtT/9hV0YeNaVMC5MGvHfJRgP4ESwL+RTEpdKGFdjgkmpE9Pr0Y//fwL66drrZ1rrR8uRn1m8X1vtDFxktXtj6gGE+w9Lbc2LUXH7Fi771HL/w7Un3EtGsn4GlQD+y22IwXqG5lrz30D1fi67B2ty+o93tr9QZRRr0eZ3L+sfhfb/3+i620uIu2ttRANqniM7ppoJRpEcZ21dR1Ftn0H7utVOtTfhNCPXXh5OgHG2/kZqAT3BGpaumk7z41GGU6Ubn4A1O1EuW1W9pdtAp2bH3bPK20gzyV9dyQudrwTeGcv9UEhg6pBpewaVMq8yOoY1yM8YQThJSgDXUiRzx/3UNYh2XGXEY1LSA7hLagP6AHg/6FMZ8F28vssagJZghL4PxgBuBY1i3wY+1ZNkWejOa3TymtGQ06jD+rHwFvs3u+h5qzHjYg9jhLKp+29/CO+f7p/4mCJ3fMUKjQssuceR011/0CJ54vs2agRR7t/bvtvJ20CuRHV1qIW+Vdsk1BUG/kMKRBgBSl0uY1kmvt/dA/tjeXFhaQtdF9Yejrpc7/zrfxo1mu1Yx5q4v269cs1KCFegZrRhlGwA669gyhIxTY+TdIsz7I+mE9aPBpIvp7YN7nJKfo1P42Oswar+wJ0S6Mf2fs90+47EmVMUcuJY/0zVt4lJAY/EZuHvXV4iO8eDBGZHmwxmoj8CpV+XoWqw1XohAG6h89axMxfgRtDCI+VUe7eqC/i3aTVyLXoBHgIjSiZg0qBM8kisEIIiy0s93jUZNBarI4F5R2PDv48HDhGim0NPQ4hzBORCShxvxANGvgeGo1zImrOejFpy4+RKMH4RAjhxBLbfig6OWN9KtFw1Zlo6OuTqI9oH9QE8oUQwm327CeAQ0MIX7b/P0Ulz0fRCKK7UEK2yIo7HDXDnB1CmFVQj5moJroSXRw5BvVHLEOZEWj47WRU+j4GlXBnhRA2WR6jUG3xiR7auoK0KBDU9LaXpW0m+SG+TNpiJ2qMK6zuX7b6jUDHyX/Z89EBDCnyabL13WTUP7I3Srw/TIpiakQZzH3AVSGER7P6fh8lnn8i2+LDyvs5Ol4bUOZ3AarBTEId8DHcuQVlFlEDHocyrOdDCA9b+Po7QwgLrMxXoOP9zVbWX9CQ7odRX4mgc6TGzqehEZOxnOF030lhGXBGCOFEEfkiafugd6G+v+NFZDTdI2tvQ8fBWVbGZOuv/Ujb4Txvv43AFSGEX9JLcCayB8N2uj0hhNAhIs+gTvUYvnc1OvmA7itVRURCL714EfkjOsgnomGUB6CT5tgQwst6eOaVxdJDkdW0InIVynBmkZhRCCF8JLvnFWgk1NW2fmIkahJ5DjVRnIkShVNQIt8ZQjgpe35q/n8H7Z2OmkpeiRKyd6CS+wSUWZ2A9sOxIYT5Bc9WoNL3S4rk+zzpuxlb24maXL4SQnh1wf2TQwgni0g0mT2JMrO/Wwe9VUQqUS1iITo25qEEK8cZKMHbysR76M9GNLT5W1bPB1CNbAJwWQjhJyIyw4jcXNLambUhhFOzPeBmWt8diRJQ0Ii06XZ+JErgjybtObYSZVhHo1L+KOvnJ0lCyEtQppNjOEqc/xVCeJOIXI/63q4Qkf2tzBmosPVWVKv9d3TsfN3ynm31eyzo3mKvRefWQitjIvDhEMID1ndXouPit9YHh6LM/U3oLgj7Wv9MsLZF7WMkGnhxPyqY/B/KOPZFtcAb0fDpb5I2Y41rmNaHEOqsbwU1933L6vd14P1hB3v07RJ6U63xY/ceqJ35XzZInyIJBUegE6fw/p/Z799Iu4BuPcoo/yRUjZ5Gdx/IdHQjuD+Svj0Sj0p2Qp2mhxX02fWLrT152OO/UDPLyVbmkaTV23GfpGjCaCPbm6qE+kRTw7mojbyF5MBfS9ovqwklzrcVPD+rh3x7/DgZMKdIWjQ7XW39/Qgqff878Eq7ZzyJSDZYuzegDPkRlJgvsN/4TGF/vhrbmwwlZM8X1GMKZmMn+aJWWb7jbVyeTPKbLEG1tvVkZrgsv+GoIzs3R30HZdBrUQ16tfX9HaQdlxegJr7r0UWIU6ytH8M+Q40S6UetPxZZuzZbXV6LMqhnSB/Resb64sXALVn9voIS+1vQ0NvhWf1r0e1eYihyF8rsmlCh5sukUPM/WDl/Qbdh+Y2lvx7VoE8o6Ot5FHGMW5s+Y+U1kta93G3t/BrqF4tBCB/qTTrkmsgeDluhPQH4Rwhhi0mmURupQp3HW4LuQFoXQqjfGU2ghzK/harvc1BH3ptCCM/atcPQqJXpRR4NIYSPiMitqENwSQllXQn8JIQwu4fr01BT1dRgJinbVbUKZaaLSCvPD0MlvEIT27UlNDuW9z6UKf2DtLbjTnT9QwUqVVag0vRnUVPZQ/bskcD1IYRJRfLdiJoxphekD0dNdUdup06vRM1Zo9CFjA9Ye89AiVZcrPht0m65h6HSdFUI4bVZXtOw/kQJ9qtQCfgGVNMZZte+hErptVbeq+yeFahZZRwqiR+IEuOPocxrDqq5Ph5019sXk/wKoOayKGG/Dh1LS+yZWqtzJerLmxNsJb+982dQIvoHlNj/kLSjc1OWb1z8eIeVsQ4VOv4bjd472/I61vrnJSIyK4RwrIjcmJUBSpzHhhDeafWYhDKZM1Cmvr/Vt5PuGzE+RNpjbR3p64QzQwjvoAhE5C7gnKALf/P0k1FteybqhN9i7+RZ1HF/IMqsOu2REIrs1F02epMj+TGwDnTSvA34fi/n24VKfjNJC5w2kyT97cahk/bruo8daEJ0d9DPsDJnZNeftN/CsMdDihzbrDkpo+3RSR3Dk58lRWpFB3B03i9B/TPHoabFZ1GGWyzf35J2DojtnGN98/Ui9z9ivzFKrZH0Kdkm1DyTR+7tj4bfPoz6JlahprO1dN9Tamt/Wh1Gotucg0YeRULYjGonUbNbiEraK63e56OE/20F9c6jv2rsPHeQz7YxuwY1L7WQtIVFpJDmGdnvIjT8ejZq1noKdYzHNRrFQtwfRM1fz1hZPyVFo0Ut7xv2/K3AHbF+RfLKw9nnWj8djfpcZpAipWba+7wcDU5oRrWUa+y4MD+KlHOi9Vvct+xS4NKCe6YU/J+DWSj66vBtTwYxgo6iv9puv1+O6SLycnSCHELaAyqEEA4rMetDs/M3oYTpIFSyOgnYKCIHoZPo5XbfP9G49WWoel0qrkSlqW7ag7VDgNtF5P+AsSLycXTX0itC2mpkP5Lt/Wa753a6O/QbdqI+70Sl+O+gDtQFqAawGSU2H0AXpN2Eagd/QonFLOA/Qggze8j3VWho9L+jUjwoM7gnhPCLwptDCK+w31ExTUSmhOJazrvQiJ4HUcJ6FGnNw89RohlxY+xPdFzcA3SYM/d0lOmcgvpeojP5s8A3g26N8jXS91neAVRZYAQhhG8By0RkLKrl3GO7Iy/Oyp+KMqJO1DEMqklUocT5SpQgX4QS5LdgOy6LyO9RE+oFIYQHRORU1Dcwim1xoT0/AWWE70PHLyGEt1u/LUMZ7ZWknXSnishpIYTH7Z5TUdNZxJoQwt9MIzkIDS6otvZMRP1EoGNiGMoYalEh5HSUqcwrUl9Q5nE/BXNBRO5Bnf0bgHvtHbwOHZ9zUXPcnB7y3GW4OWuQQUTOyf5WoBP6lSFzcpsT/vOo7TiquIS0H9XOlBedqa9AzSU/Rp15jeiE/p3d+gHUwXemPbc/aisHlX5X95D/Y6EHB71dn4kShNejRO/uEMI9IvJWNNT5BagN/RCUONWSvo1uzS6ZeSIif0Wd1G9HbeJ3oFLyMtSkMIH0Gdhn0I3vXlNCvnNDCEfZ+Sir2KZS62XP9RSd9IDV7X7S9h0fR5nU50MIv8/y+AEaxfZ6lBB9E5Wca1BmfBPKqJ8MKTKwcAyMRgnmD+g+vn5SUN9ohhuOMrloajoQZfIr0Pf2LPouQYniNaiG9LUQwv9l+c1BCWZkSi+0++P7bSFt6BhQn81RaCTd963Mers+CSXybw/Z3mVWxlEoM87LiKHMn0f9gG+yen4YFdjuQn1Kr0ODDWpEpMnaHsOMK9FvDI2kCETkqVAkijBPl7Rf3YGopjjB2nEvJURClgNnIoMMInJ19rcDNTFckRNpEXkihHDqLpQRY91BzUdxodw0VPq8Fx1bJxQ8Ny2oHTyXjAW1uf9XCOGmImX9GpWK/0b3SRBDfK8FfhlCmFzw3HR0Mdi9QcMlX41qCoeFENbuQtsfRKPFVqKSZtwsr9Ju2WD1bSKZubr5mopNYNEv5t3TUztLrFskIIXYEkI4TkQC+q6iT2AT+v6atKgwulikmjHqX6If/ro9hlGHtHPuU9bH30Ol5IvQYIVSw6avpvv3Q/Yn7br7YpSgn2JpV5F8fiGE8NMsn0NQaf1pknb1NvTbMW8NIdyXt09Ebg4h/Ef2/KtRcxioie3+InU9ZAfN+a7V+WBUwDgDNXe9xaKyPooylxgNFtBxCkrs7wo9fPtcRP4Xnc/dxgg6bt4eQlgiIiNQn8ynUaHheXTct+V5hV78rogzkSEIk1grUUk6J1hTy8jrdlTieQM6gSehDu21aOTQ9Xbre9FQyNcagT8zpI9k7YsS+5cWyf/qwjSyEF/Tqo5Apc9c+m4LIUyysk4MIXQZ89s/FDgmd7K9MSjhZtQ3sL+1tQuVaBeh2s9i1OH+OKoJ5ZUvFsq8jrRD7DbtLLFuI1CC+QqUOP0Tjfj5Fsr4jkW3pfk2GrL6LrG1RiLyKdKHuhZk2e6POuPvQP0wuekrlhvHwJmoOfPHwL9FzWpnYEEX61Ez0mtRbVVQf8eRpD56C6oNfcCe+10I4YMiciGqBb3C7nsY/bb4aXZfLrUXlex3BVGjFP1o2FjUbDUBHSO1KLPstDZFk1Q0p64A/hRC+F4PeS8qkhzQ93Y5KqycgWpY30LNbO9D91N71y43rgc4ExkkEJFfUFwKBSBk0Rii3x8huz/6RHZodilSbuFivxloiOZc1CfyMtIK3c+EEJaKyMwQwnFZHhVoCOhx25aww/J7kgyvRKXQ76HEfTVqUluHmndy5rlTkSpmivsnakb7K2raENI32ltRs0klKuX/Ao3KmlUsP8uzCV3VvM0lreKO4/yLRA59Eg0Jfa2ZOb+MMtxW1AfTANwedB3HGNQX8z2S/+zbqLYVTZLvRlfgn19QbuEYeBb1my0k+yZLYRt6GLPvQ82goKahFajJ6B/Am0P3hZJ/DyGcYf9no6aiO9Gw5BiJBRqxNg59V98lfTrhq4Va167ChJ4fWTmHo6a4fN3PtSiz3Yj6P0C1LNDPBjxVZrn7oWbW89Bx+XUzMW5CmVcUsOK7GF1OOUXLdiYyOCAi52Z/v4nG+29FCOFak9IgMwegkSmPhBCKSTk7W4dqNMLleDMzfS6EsN6ujUc3TvyIiPwIlYyjlvJuNOLqv4vkuT0H/fbqshdqAxc0KmkM6VvT3RB2LsQ3muJAGeNZqAlrHWrCiJsITkOjf+ajhPhHqPO56EphM3UsQjU50FXH38DCc4MFCuygbrNDCMdk/28Hjs7NI/YeDkYDA94NjA7Fv1cStbyjgxEJY/azQghH76AeRRl7YRt6GLNbx66N2bhIcS666WOrPVuDjpnoR/os+knmw1CtaGsxqBARTaXnouNA7MhX4+8ycZX0sTHQsVCyEFBC3tVoG8+wpAdR7f9cNKT8IJRpj0V3036NOf7PDyF8aFfL77FezkQGH7bjgLu4yO3jUVPUN0IIN5SY/zlFksehROmREMK3itUh+kSyPKLJ4Z/FzCR23z1sx0G/u1HEFHcjalpZjWoBB6Lhpt8lMZOJqBnmqhDC8m1zBRFpRAlB2e0UjU76ZUiRQ7OxreZDCPcXvLdLUEm/R7+LMaHzQ4p0O8Tyf0uJ9ckj4wjbWReU+VXirsigBHgESuhrUF/Ot+3a2yhi+hGRy0IInyqlfn2BjIH+CCXw86E0IaCEvH+LRnpFoeeDqGnsVNTs9zjaT0ehZrQ1FDj+e4OZbVMvZyKDD8Wcozu4fzzqkyh1649CP0VAJfEHQwh/t3umA68q0ESWhxBGRPt1iWVtZTzbS8uu5U7/bpdQe/RzhRfCzkVnFZri5qATtB212deiEzuGTm8JPUTbFOTbie4rtbVaaKjwq0rVEmXbyKFDUGl4PLoupN7yFXQL9pvZjt9FRB5CidOT9twpKFPaCNvd66xYZNycEMKx26n7DsesiJxE+nLiw6WafsrVZncF0sNnlneFiEu2V16ehvr/ThZdKPpO1Il+D2o264beYGaF8HUiDoLG2MuO79x6/4dLuO0nwGMi8mf7/05greiK79OLaTM9SMTrROQDdHfQ9xiKHLJ1E4UQ3TgyYrjVafx2W7Et7hKRu7P6jEWJ8cl2Phnd16kJZSjVpmXA9k0mi1EiF9eRHGf33ykipWqJZxX8vxQ1uY1CmcAG+z0N9Vf0tGYl4usllFkM37Yy8si4D5SZ11YEDfzY6eAPNMDjj+j7xupyNUWIbC+i8F30BjpF5PCQNn88DBVY8rU3V6KBCfP7gmEUg2sigwQFEngtO2HrtUn+tVId66LfUu8R0VEt+i32mOf9KMF+P7qxXEmRSGYeKOqgL6WuO4KI1IcQ6kq47wg0sutfBaa4t6G+j8Xo4rgx6P5HAY2EuqiYabFI/kXbiZp2StYSC/LcHw11nYA6qMehWsEGNOzztWQRTtup15EhhHst+qsq7GD9itiiR+keGVdMii57zO4MdlabHagQkdeQPjYGBZs/2j1x7c1dIYS2wjz6Aq6JDBJsTwKPEI33L5QaxqOx5DvjeKvPzrdx4md1ih+pyvGIEZkrSyzrW+g3Sro56NEFbzsFM4dExIWYpc6Bn6Gb7UWNKa5TmYEu3LsI3ewxmsbuRbc1bykx/6LttECEkrXEHCGEVajWF9c/XICubI4mx1HYrr/FILq6/zx0jByOOm5/gzKf7WGDiIxEw2v/ICKrKR7QsMMx20vYKW12AGNv9D1ORIWXl2GmxYjQi+s/SoVrIoMYInJeCOHy7H9h1EwA1oUQtpngO1FGUSd+Cc+dzrbfCLmulPx3ocwHSEw0LsT8cbDNI3fw7OQQwsk9XJsZdDHfDhd6bif/ou1EwzVL1hJ3UMZ2I5yK3D8N9YM8EdLaim4+oR6eKxYZ94dQxo4IvYG+1mZ3F6SH3SHCLiwc7g24JjK48Ul0ERLQN041trM2pSeIyO9QyXYa2c6i6I64hagQkXEFEnq54/aNqEN5YpbHe0jfXtgexuZ/ROSREMIrzCSzV4l+j+3hxSIyi9QflegGhj9g57TE7eE64EkRyVdzX7Od+1tDCG1RERKRKkp43wVCScnh032IXtNm+xlxbLwZFU7+LiLf6c8KgTORQQMReWGREEqxa/8WQvhnP1SrJ0xCvz1SCgMq5qD/bpnl/hX1B0yldDNTxBQR+XgI4QpIGyCiYbJfIm3QB3T3G4XSFjNehO58e4f9fxPwqRDCb3eynj0ihPBdEbmTFOH04R1EOD0kIhcBI0TkTHRl9N96unkHkXG95uMoA8dHBgJbA0l6daX6bsJy0c0xzwR+YJpkxQ6e6XO4OWuQQHSbhd+g397otLSD0I3lXhyK7O66C2XtkkPUGMJnQwgrSiyvm4M+9PBtkRLyeToU+apgic9GJ3Ub227Sdz3JNl10oWeJZfRKO3sLoosLP0q2uSXw2xKZ/4BBD+HmD+3ILDfQID18CjrYHmb9Vq89bDw4eoCIjEMZxumoA/U4VEr+Efr50q7tPL5bYb6JE+j+edNe3Vm0h3IvB34Ret6OvZQ8trtJX7n+moEK0X3NCCGs6e+6lAsR+RCq6XXTZkMIv+v5KUepcCYyyCAiF6CrkZ9HN57rswVV5UJ28cuKZZQXo9Kq0AWB293TaRfL2qmFngMRFg12MboTbDSXdKIMuBT/0YDDQNPyBhPcJzJIYIuNfoBugXAWalO/U0QuKJSW+xv9EIb477u5vD0dn0cXPp4cbLW8LWy7TEQ+H0K4pF9rVwZ6CDd39AJcExkkMJ/Ir4GfhRA6LO0ES1scQnhvP1YP2CaiKR94/e143SXsrkVzuwsWWnxmKPjuipm2/jGYzHWOXYczkUECETmoJ9NVHlXkcOwI2wtA2JXgBMfgRL+Hhzl6B9vzfTgDcewktrddxm7ZSsOx58A1EYfD0Q3SfTv2bpeA4SGE6t1cJccAhjMRh8PhcJQNN2c5HA6Ho2w4E3E4HA5H2XAm4nCUCRH5iojMEpEZIjJN9HvWfVXWgyLSa1vXOBy9BV9s6HCUARF5GbqI8aQQQquI7IPuo+VwDCm4JuJwlIcJwNr4bY4QwtoQwvMi8nURmSwiT4vI5fGDUqZJXCIiU0RkjoicLCK3iMi8uJ23iEwUkWdE5A92z0226V43iMjrReQxEZkqIn+2D0AhIt8XkdmmGf14N/aFYwjDmYjDUR7+ARwsIs+KyK+z/cB+GUI42RbkjaD7litttpvyb9DP056Pbub4/yR9//0o4NchhKOBRnT79a0wjeerwOtsj64pwIX2/NuBY20vsH7/zoRjaMCZiMNRBkIIm9HP354HrAH+JCL/D3i1iDxhmz6+Bjg2eyx+V34mugPwCtNkFgIH27WlIYR/2fnvSd9yjzgNOAb4l3158Fz0u+kb0W+kXCn6DfgmHI7dAPeJOBxlwr7b8iDwoDGNTwDHA5NCCEtF5BvA8OyRuO19V3Ye/8e5WLhwq/C/APcU2wtNRE5Bv3/+DnQH3l3+pK7DsSO4JuJwlAEROUpEjsySTgDm2vla81O8o4ysX2hOe4D3AY8UXH8ceLmIHGH12EtEXmTljQkh3IHuwvvSMsp2OHYarok4HOVhJPAL24K/A5iPmrY2AE8DK4HJZeQ7FzhfRK5Cty6/LL8YQlhjZrPr7fOooD6STcCtIjIc1VYuLKNsh2On4dueOBwDBCIyEbjdd8l17Elwc5bD4XA4yoZrIg6Hw+EoG66JOBwOh6NsOBNxOBwOR9lwJuJwOByOsuFMxOFwOBxlw5mIw+FwOMqGMxGHw+FwlI3/D1cLQo6oh/+fAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tokens = FreqDist(sum(humanist_vols[0:2]['text'].map(word_tokenize), []))\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEVCAYAAAAhANiZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA26klEQVR4nO3deXxU1dnA8d8zWUlI2MISFlkERURBEgF33LG11fpiq9atLnTR1r7avopbXWpd6mtbbavV4qvWutYNkEVFFjeWBJFFtrAoIAKBkISE7M/7xz0DQ5gkk8lMJsvz/XzuZ+4999wz54ZhnrnnnHuuqCrGGGNMOHyxroAxxpjWy4KIMcaYsFkQMcYYEzYLIsYYY8JmQcQYY0zYLIgYY4wJW3ysK9DcMjIydMCAAWEdu2/fPjp06BCxfFamlWllWpktscxgcnNz81W1+yE7VLVdLVlZWRqunJyciOazMq1MK9PKbIllBgPkaJDvVGvOMsYYEzYLIsYYY8JmQcQYY0zYLIgYY4wJmwURY4wxYbMgYowxJmwWREKgqqzaVsTn35bHuirGGNOiWBAJwZfbijjvLx/xZE4has9fMcaY/SyIhOCoXul0T0ti174aVn9bHOvqGGNMi2FBJAQ+n3D6kd7d/h+u3hHj2hhjTMthQSREZwztAcDcNRZEjDHGz4JIiE4anEG8QO5XBewprYh1dYwxpkWwIBKitOQEjuqeSI3CvLU7Y10dY4xpESyINMKozCQA5q6xIGKMMWBBpFFG9fIHkR1U19hQX2OMsSDSCH3S4jisawoFpZUs3bwn1tUxxpiYsyDSCCJio7SMMSaABZFGGmf3ixhjzH4WRBpp7KBudEiIY+U3RWwvKot1dYwxJqYsiDRSckIcJw3uBliTljHGWBAJw7gjvX4Ra9IyxrR3FkTCcLrrXP94XT7lVdUxro0xxsSOBZEw9OncgaG90iipqCZnU0Gsq2OMMTETtSAiIskiskhEvhCRlSJyr0sfKCILRSRPRF4VkUSXnuS289z+AQFlTXLpa0Tk3ID08S4tT0Rui9a5BGNNWsYYE90rkXLgDFUdAYwExovIWOBh4E+qOhgoAK51+a8FClz6n1w+RGQYcAlwNDAe+LuIxIlIHPA34DxgGHCpy9ss/PeLzLEgYoxpx6IWRNSz120muEWBM4D/uPTngQvd+gVuG7f/TBERl/6Kqpar6kYgDxjtljxV3aCqFcArLm+zGHVYZ9KT49mQX8Km/JLmeltjjGlRoton4q4YlgI7gPeB9cAeVa1yWbYAfdx6H2AzgNtfCHQLTK91TF3pzSI+zsepR3g3Hs6xob7GmHZKmuOZ4SLSGXgLuAt4zjVZISL9gBmqOlxEVgDjVXWL27ceGAPcAyxQ1Rdd+mRghit6vKpe59KvAMao6o1B3n8iMBEgMzMza+rUqWGdR2lpKSkpKfu35361jycWFTKiZyJ3n9q1znyNKbOp+axMK9PKtDKbWmYw2dnZuaqafcgOVW2WBbgb+C2QD8S7tBOAWW59FnCCW493+QSYBEwKKGeWO27/sS79oHx1LVlZWRqunJycg7bzi8t0wG3TdMjt07WkvLLOfI0ps6n5rEwr08q0MptaZjBAjgb5To3m6Kzu7goEEekAnA2sAuYAE1y2q4B33PoUt43b/6Gr+BTgEjd6ayAwBFgELAaGuNFeiXid71OidT7BdOuYxIi+namoruGTvF3N+dbGGNMiRLNPJBOYIyLL8L7w31fVacCtwM0ikofX5zHZ5Z8MdHPpNwO3AajqSuA14EtgJnCDqlar129yI96VySrgNZe3WflHadlQX2NMexQfrYJVdRlwXJD0DXgjq2qnlwEX11HWA8ADQdKnA9ObXNkmOGNoDx57fy1z1+xAVfEGlBljTPtgd6w30bDMdLqnJbGtsIzV3xbHujrGGNOsLIg0kc8nnG7PGDHGtFMWRCLAnnZojGmvLIhEwEmDM0iIE3K/KmBPaUWsq2OMMc3GgkgEpCUncPyArtQozFu7M9bVMcaYZmNBJEIONGlZEDHGtB8WRCLEPzX83DU7qG6GqWSMMaYlsCASIYd3T+WwrikUlFaSt7sy1tUxxphmYUEkQkRkf5PWkm3lMa6NMcY0DwsiETTO3S+Sa0HEGNNOWBCJoLGDutEhIY6Ne6rYXlQW6+oYY0zUWRCJoOSEOE4a3A2A977cHuPaGGNM9FkQibDzj+0NwKuLv45xTYwxJvosiETY+OG96JgorNhaxLIte2JdHWOMiSoLIhGWnBDHuP4dAHhpoV2NGGPaNgsiUXD2IO85xlO++IbiMrtnxBjTdlkQiYK+6fGMGdiV0opq3l76TayrY4wxUWNBJEouG3MY4DVpqU2DYoxpoyyIRMn44b3omprIqm1FLN28J9bVMcaYqLAgEiVJ8XFMyOoLWAe7MabtsiASRZeO9pq0pi77hsJ91sFujGl7LIhE0cCMVE48vBtllTW8/fnWWFfHGGMizoJIlFkHuzGmLbMgEmXnDOtFRsdE1mwvZsnXBbGujjHGRFTUgoiI9BOROSLypYisFJGbXPo9IrJVRJa65TsBx0wSkTwRWSMi5wakj3dpeSJyW0D6QBFZ6NJfFZHEaJ1PuBLjfUzI6gfAv62D3RjTxkTzSqQKuEVVhwFjgRtEZJjb9ydVHemW6QBu3yXA0cB44O8iEiciccDfgPOAYcClAeU87MoaDBQA10bxfMJ26WgviLy7bBuFpdbBboxpO6IWRFR1m6oucevFwCqgTz2HXAC8oqrlqroRyANGuyVPVTeoagXwCnCBiAhwBvAfd/zzwIVROZkm6t8tlVOGZFBeVcMbS7bEujrGGBMxzdInIiIDgOOAhS7pRhFZJiLPikgXl9YH2Bxw2BaXVld6N2CPqlbVSm+RLnPDfV9aZB3sxpi2Q6L9hSYiHYF5wAOq+qaI9ATyAQXuBzJV9RoR+SuwQFVfdMdNBma4Ysar6nUu/QpgDHCPyz/YpfcDZqjq8CB1mAhMBMjMzMyaOnVqWOdSWlpKSkpKWPmqapSfvruTPWU13D+uK8O6Jza5zGjU08q0Mq1MKzOY7OzsXFXNPmSHqkZtARKAWcDNdewfAKxw65OASQH7ZgEnuGVWQPoktwheMIp36Qflq2vJysrScOXk5DQp3yMzV2n/W6fpTS8viViZTclrZVqZVqaVGSogR4N8p0ZzdJYAk4FVqvpYQHpmQLYfACvc+hTgEhFJEpGBwBBgEbAYGOJGYiXidb5PcSc1B5jgjr8KeCda5xMJlxx/GCIwfcW3FJRUxLo6xhjTZNHsEzkJuAI4o9Zw3kdEZLmILANOB/4bQFVXAq8BXwIzgRtUtVq9Po8b8a5MVgGvubwAtwI3i0geXh/J5CieT5P165rCqUO6U2Ed7MaYNiI+WgWr6sd4TU61Ta/nmAeAB4KkTw92nKpuwBu91WpcNuYw5q3dyUuLvubakwfGujrGGNMkdsd6MztzaA96piexYWcJCzbsjnV1jDGmSSyINLP4OB8/yvZuPnxpkd3Bboxp3SyIxMCPRh+GT2Dmim0UltfEujrGGBO2qPWJmLr16dyBcUf24MPVO5i2toQ+g4qJ80Gcz0ecCD4fxPnEW8R7rai2GxSNMS2PBZEYuWz0YXy4egdvri7hzdXzG8wf74OXe+zm+AFdm6F2xhgTGgsiMXL60B5cdFwfcjZsJykpmWpVamqUqhrvtVqV6hqoUWVfRTX7Kqt5c8lWCyLGmBbFgkiMxPmEx340ktzcXLKysurN+8XmPVzwt0+Yv3Ynqop3H6cxxsSeday3AsP7dCItUdi6Zx8b8ktiXR1jjNnPgkgrEOcTRvRMAmD+2p0xro0xxhxgQaSVGNnLgogxpuWxINJKjOzpTR2/YMNuyquqY1wbY4zxWBBpJbp0iGNorzT2VVaTs6kg1tUxxhjAgkirctoR3QFr0jLGtBwWRFqRU10QmWdBxBjTQlgQaUWyB3ShQ0Icq78tZntRWayrY4wxFkRak6T4OE44vBtgTVrGmJbBgkgrc+qQDADmr8uPcU2MMcaCSKvj7xf5eN1OqmtsZl9jTGxZEGllBmak0rdLBwpKK1mxtTDW1THGtHMWRFoZEdl/NWL9IsaYWLMg0gqdOsQFkXUWRIwxsWVBpBU6cXA34nzCkq/3UFRWGevqGGPaMQsirVB6cgKjDutMdY3yad6uWFfHGNOOWRBppfZPgWJNWsaYGIpaEBGRfiIyR0S+FJGVInKTS+8qIu+LyDr32sWli4g8LiJ5IrJMREYFlHWVy79ORK4KSM8SkeXumMelHT3yb/8UKGu8px0aY0wsRPNKpAq4RVWHAWOBG0RkGHAbMFtVhwCz3TbAecAQt0wEngQv6AC/A8YAo4Hf+QOPy3N9wHHjo3g+Lcrw3p3omppoTzs0xsRUo4OIiHQRkWMbyqeq21R1iVsvBlYBfYALgOddtueBC936BcAL6lkAdBaRTOBc4H1V3a2qBcD7wHi3L11VF6j3U/yFgLLaPJ9POHmwu3vdhvoaY2JEQmkKEZG5wPeBeCAX2AF8oqo3h/QmIgOA+cBw4GtV7ezSBShQ1c4iMg14SFU/dvtmA7cC44BkVf29S78L2AfMdfnPcumnALeq6vlB3n8i3tUNmZmZWVOnTg2l2ocoLS0lJSUlYvmaWuacTfv46+JCRvVK4o5TutSbN5b1tDKtTCuzdZUZTHZ2dq6qZh+yQ1UbXIDP3et1wL1ufVmIx3bECzwXue09tfYXuNdpwMkB6bOBbOA3wJ0B6Xe5tGzgg4D0U4BpDdUnKytLw5WTkxPRfE0tc3vhPu1/6zQdeucMLausikiZTc1rZVqZVmbrLzMYIEeDfKeG2pwV75qPfui+7EMiIgnAG8C/VfVNl7zdlYV73eHStwL9Ag7v69LqS+8bJL3d6JGebE87NMbEVKhB5F5gFpCnqotFZBCwrr4DXFPVZGCVqj4WsGsK4B9hdRXwTkD6lW6U1ligUFW3ufc9x/XFdAHOAWa5fUUiMta915UBZbUb9rRDY0wshRpEtqnqsar6CwBV3QA81sAxJwFXAGeIyFK3fAd4CDhbRNYBZ7ltgOnABiAPeAbwv9du4H5gsVvuc2m4PP90x6wHZoR4Pm3Gafa0Q2NMDMWHmO8JYFQIafup10Fe130bZwbJr8ANdZT1LPBskPQcvM76diur1tMOe6Ynx7pKxph2pN4gIiInACcC3UUkcCRWOhAXzYqZ0Pifdvjh6h3MX7uTi7P7NXyQMcZESEPNWYl4o6vigbSApQiYEN2qmVDZ0w6NMbFS75WIqs4D5onIc6r6VTPVyTSSPe3QGBMrofaJJInI08CAwGNU9YxoVMo0jv9ph1sK9tnTDo0xzSrUIPI68BTeSKjq6FXHhMP/tMOXFn7N/LU7ObFzrGtkjGkvQh3iW6WqT6rqIlXN9S9RrZlpFJsa3hgTC6EGkaki8gsRyXRTuXd1s+uaFuLEw7sR7552WFJZE+vqGGPaiVCbs/x3mP82IE2BQZGtjglXWnICow7rwqJNu1mxo4JTY10hY0y7EFIQUdWB0a6IabpTj8hg0abdLP22PNZVMca0EyEFERG5Mli6qr4Q2eqYpjj1iO48+t5aFn9TTlllNckJdj+oMSa6Qu0TOT5gOQW4B+/5IqYFGd67E0dlplNQVsOLC+y2HmNM9IUURFT1lwHL9XhzZnWMbtVMY/l8wv+MPxKAv87Jo6isMsY1Msa0deE+Y70EsH6SFmjcEd05unsCe0or+ce89bGujjGmjQspiIjIVBGZ4pZ3gTXAW9GtmgmHiHD5MWkATP54IzuKymJcI2NMWxbqEN9HA9argK9UdUsU6mMi4IhuiZx7dE9mrdzOX2av44EfHBPrKhlj2qhQ+0TmAavxZvDtAlREs1Km6X577pH4BF5ZvJmN+SWxro4xpo0KtTnrh8Ai4GK856wvFBGbCr4FG9wjjYuz+lFdozz63ppYV8cY00aF2rF+B3C8ql6lqlcCo4G7olctEwm/PnsISfE+3l22jeVbbHZfY0zkhRpEfKq6I2B7VyOONTGS2akDV584AICHZ66ObWWMMW1SqIFgpojMEpGrReRq4F1gevSqZSLl5+MOJz05no/z8vnYnnxojImweoOIiAwWkZNU9bfAP4Bj3fIZ8HQz1M80UeeURH427nDAuxqpsScfGmMiqKErkT/jPU8dVX1TVW9W1Zvx7hH5c3SrZiLlJycOpGd6Esu3FjJ9xbZYV8cY04Y0FER6qury2okubUBUamQirkNiHDedeQQAj85aQ2W1PW/EGBMZDQWRzvXs61DfgSLyrIjsEJEVAWn3iMhWEVnqlu8E7JskInkiskZEzg1IH+/S8kTktoD0gSKy0KW/KiKJDZxLu/bD7L4Mykhl065SXl28OdbVMca0EQ0FkRwRub52oohcBzT0eNzngPFB0v+kqiPdMt2VNwy4BDjaHfN3EYkTkTjgb8B5wDDgUpcX4GFX1mCgALi2gfq0a/FxPn5zrjc5419mr6O0oirGNTLGtAUNTXvya+AtEfkxB4JGNpAI/KC+A1V1vogMCLEeFwCvqGo5sFFE8vDuRQHIU9UNACLyCnCBiKwCzgAuc3mex5ue/skQ369dOm94L0b07cQXWwr5v082MTY91jUyxrR29V6JqOp2VT0RuBfY5JZ7VfUEVf02zPe8UUSWueauLi6tDxDYxrLFpdWV3g3Yo6pVtdJNPUSEW8cPBeCpuespLre+EWNM04hq9IZ8uiuRaao63G33BPLxns9+P5CpqteIyF+BBar6oss3GZjhihmvqte59CuAMXhXHQtcUxYi0g+Y4X+fIPWYCEwEyMzMzJo6dWpY51NaWkpKSkrE8sWqzPvm7+aL7RWcNzCR67K7tth6WplWppUZmzKDyc7OzlXV7EN2qGrUFrwRXCsa2gdMAiYF7JsFnOCWWQHpk9wieMEo3qUflK++JSsrS8OVk5MT0XyxKnP5lj3a/9Zpevikabpx596Ivn9LP3cr08q0MsMD5GiQ79RmnbpERDIDNn8A+EduTQEuEZEkERkIDMGb8HExMMSNxErE63yf4k5oDuCfBPIq4J3mOIe2YHifTlwwsjdVNXDJ0wtYt7041lUyxrRSUQsiIvIy3p3tR4rIFhG5FnhERJaLyDLgdOC/AVR1JfAa8CUwE7hBVavV6/O4Ee/KZBXwmssLcCtws+uE7wZMjta5tEX3XzicYRkJfFtUxsX/+IzPvy6IdZWMMa1QqA+lajRVvTRIcp1f9Kr6APBAkPTpBJmnS70RW6Nrp5vQpCcncOepXXl2lfLBqh38+J8L+ccVWZwypHusq2aMaUVsJt52LClOePLyLC46rg+lFdVc89xipi+3aVGMMaGzINLOJcT5ePTiEVxz0kAqq5UbXlrCy4u+jnW1jDGthAURg88n3HX+Udxy9hGowqQ3l/P3uXn+EXHGGFMnCyIG8G5E/OWZQ7j/wuGIwCMz1/DgjNUWSIwx9bIgYg5yxdj+/OWS44j3CU/P38D//GcZVTbrrzGmDlEbnWVar++P6E16cjw/f3EJr+duoXBfJT8ZGutaGWNaIrsSMUGNO7IHL143mvTkeN77cjsPflxAWWV1rKtljGlhLIiYOmX178prPzuBjI5JLNtRwU2vfG5NW8aYg1gQMfUa2iudf107mtQEYdbK7dz+1nLrbDfG7GdBxDToqMx0bj+5C8kJPl7L2WKjtowx+1kQMSEZmpHIU5dnkRDnjdp6ct76WFfJGNMCWBAxIRt3ZA8e++HI/feRvLTQ7mw3pr2zIGIa5XsjenP/Bd6zv+54eznTln0T4xoZY2LJgohptMvH9uc353hTpPz3q0uZt3ZnrKtkjIkRCyImLDecPpjrTvYmbfzZv3LJ/cqeR2JMe2RBxIRFRLjju0cxIasv+yq9aeTXfGtPSDSmvbEgYsImIjx00TGcM6wnhfsquWLyQr7dWxXrahljmpHNnWWaJD7Ox+OXHsdP/m8xn23YxT3zKpm/cxnJCT6SE+JISojz1uPjSPavu9fCwkpGVNcQH2e/ZYxprSyImCZLTojj6SuzuOyZhSzfWsirOZtDPva2D2cxNDOd4b3TGd6nE8N7d+KIXh1Jio+LYo2NMZFiQcRERFpyAq/+dCz/nL6A7r0Po6yymrLKGu+1qpryyhr2VXjrZZXV7KusYc3W3WwvqeaLzXv4YvOe/WXF+4QhPdP2BxYpqqD7rlJ6pCeRnGDBxZiWxIKIiZiUxHhO6teBrKzDQsqfm5vL4KOOZeW2QlZuLWLFN4Ws/KaI9Tv3smpbEau2FfF67hYv89w5AKQlx9MjLYkeacl0T0vy1tMPbFdX2ASRxjQnCyImpjqlJHDi4RmceHjG/rSS8ipWf1vEiq1FrNhayNKN2ymtiWdHcRnFZVUUl1WxfmdJ0PI6xAvXFa/hupMH0SkloblOw5h2y4KIaXFSk+LJ6t+VrP5dAe+KJSsrC1VlT2klO4rL2VFcxs7icm+9yNvevLuUL7YU8sSHeTz36SauO3kQPzl5AOnJFkyMiRYLIqbVEBG6pCbSJTWRI3ulBc3z71mfMWOzj4/z8vnTB2t59pONTDx1EFedOICOSfZxNybSoja2UkSeFZEdIrIiIK2riLwvIuvcaxeXLiLyuIjkicgyERkVcMxVLv86EbkqID1LRJa7Yx4XEYnWuZjWY2hGIi9eN4ZXJ45lzMCuFO6r5I+z1nDKwx/y1Lz1lFbYfSzGRFI0B+g/B4yvlXYbMFtVhwCz3TbAecAQt0wEngQv6AC/A8YAo4Hf+QOPy3N9wHG138u0Y2MGdeOViWN56boxZPXvQkFpJQ/NWM2pj8zhnx9toLzKnodiTCRELYio6nxgd63kC4Dn3frzwIUB6S+oZwHQWUQygXOB91V1t6oWAO8D492+dFVdoN7TkV4IKMsYwGv+OnFwBv/52Qm8cM1oRvbrTP7eCn7/7ip+MWMnU774xh6uZUwTSTT/E4nIAGCaqg5323tUtbNbF6BAVTuLyDTgIVX92O2bDdwKjAOSVfX3Lv0uYB8w1+U/y6WfAtyqqufXUY+JeFc4ZGZmZk2dOjWs8yktLSUlJSVi+azM5i1TVVnybQWvrixmfYHXrHV87ySuH5VOtw5133/SFs7dyrQyG1NmMNnZ2bmqmn3IDlWN2gIMAFYEbO+ptb/AvU4DTg5Inw1kA78B7gxIv8ulZQMfBKSfghesGqxTVlaWhisnJyei+azM2JRZU1OjD742X4ffPVP73zpNh989U/+94Cutrq5pUfW0Mq3MWJUZDJCjQb5Tm3vSou2uKQr3usOlbwX6BeTr69LqS+8bJN2YBokIZw9K4f2bT+Oso3pSXF7F7W8t57J/LmBTfvD7T4wxwTV3EJkC+EdYXQW8E5B+pRulNRYoVNVtwCzgHBHp4jrUzwFmuX1FIjLWNYtdGVCWMSHp1SmZZ67M4q+XHUe31EQWbNjNuX+ez9Pz11NVbXe+GxOKaA7xfRn4DDhSRLaIyLXAQ8DZIrIOOMttA0wHNgB5wDPALwBUdTdwP7DYLfe5NFyef7pj1gMzonUupu0SEc4/tjcf3HwaFx3Xh/KqGv4wfTUXPfkpq7YVxbp6xrR4Ubv7SlUvrWPXmUHyKnBDHeU8CzwbJD0HGN6UOhrj1yU1kcd+NJLvjezNHW8uZ9mWQr73xMf8fNzhnNTZRnAZUxd7kIMxAU4/sgfv3XwaV57Qn6oa5YkP87j/owJqaiyQGBOMBRFjaumYFM99FwzntZ+eQEbHJFburODfC7+KdbWMaZEsiBhTh9EDu/L7C70W04dnrmFb4b4Y18iYlseCiDH1GD+8F2P6JLG3vIq73l5pd7gbU4sFEWMacN1x6aQlxfPBqu3MWPFtrKtjTItiQcSYBnTtEMet5w0F4O53VlJYWhnjGhnTclgQMSYEl40+jOMHdCF/bzkPzlgV6+oY02JYEDEmBD6f8OBFx5IY5+OVxZv5bP2uWFfJmBbBgogxIRrcoyM3nD4YgNvfWk5ZZXWMa2RM7FkQMaYRfj7ucI7o2ZGN+SU88eG6WFfHmJizIGJMIyTG+3jwomMRgX/M22Dza5l2z4KIMY2U1b8LV4z1pkW57Y1lVNuUKKYdsyBiTBh+e+6RZHZK5osthTz/6aZYV8eYmLEgYkwY0pITuP8Cb0qUR99bw5aC0hjXyJjYsCBiTJjOGtaT7x6TSWlFNXe+vcKmRDHtkgURY5rgd98fRnpyPHPX7OTjzWWxro4xzS5qD6Uypj3okZbMHd89ilvfWM7kz4vYrstJivftXxLjfSTFx5GU4CMxzkdSgrcdX2r3mJi2wYKIMU30w+x+vP35N3y2YRcvL/o6pGMS4+DX1Xlcf8ogEuKsQcC0XhZEjGkiEeGpy7P458yF9Ozdj4qqGsqraiivqt6/XuG2y6tqyN9bzid5u3hk5hre/nwrf/jBMWQP6Brr0zAmLBZEjImATikJjOvfgays/iHlf3b6p7ywspy12/cy4anPuOT4ftx23lA6pyRGuabGRJZdRxsTAyN6JjHz16fyqzMGkxAnvLJ4M2f87zzeyN1io7xMq2JBxJgYSU6I4+ZzjmTGTacyZmBXdpdUcMvrX/Djfy5k/c69sa6eMSGxIGJMjA3u0ZFXJo7l0YtH0CUlgU/X7+K8P3/En95fS0W1XZWYli0mQURENonIchFZKiI5Lq2riLwvIuvcaxeXLiLyuIjkicgyERkVUM5VLv86EbkqFudiTCSICBOy+vLhLeP4YXZfKqpr+Mvsddz8Xj4zlm+zJi7TYsXySuR0VR2pqtlu+zZgtqoOAWa7bYDzgCFumQg8CV7QAX4HjAFGA7/zBx5jWqsuqYk8MmEEr04cy+AeHdm2t5qf/3sJ3//rJ8xfu9OCiWlxWlJz1gXA8279eeDCgPQX1LMA6CwimcC5wPuqultVC4D3gfHNXGdjomLMoG5M/9UpXH9cOt3Tkli+tZArn13EJU8vIPer3bGunjH7xSqIKPCeiOSKyESX1lNVt7n1b4Gebr0PsDng2C0ura50Y9qExHgf4wenMP+3p3PbeUPp1CGBhRt3819Pfsa1zy3my2/sWSYm9iQWl8ci0kdVt4pID7wriF8CU1S1c0CeAlXtIiLTgIdU9WOXPhu4FRgHJKvq7136XcA+VX00yPtNxGsKIzMzM2vq1Klh1bu0tJSUlJSI5bMyrczG5CupqGHK2hKmrS2lzHW4n9QvmUuO7kjvtPgWU08rs/WXGUx2dnZuQPfDAaoa0wW4B/gNsAbIdGmZwBq3/g/g0oD8a9z+S4F/BKQflK+uJSsrS8OVk5MT0XxWppUZTr6dxWV675SVOuT26dr/1mk6aNK7etsbX+hLsz7VPSUVLaaeVmbrLTMYIEeDfKc2+x3rIpIK+FS12K2fA9wHTAGuAh5yr++4Q6YAN4rIK3id6IWquk1EZgF/COhMPweY1IynYkxMZHRM4u7vDePaUwby+Afr+M+SLby8aDMvA5M+fI+uqYkM6JbCwIyODMxIYUBGKgMzUhnQLZXUJJukwkRWLD5RPYG3RMT//i+p6kwRWQy8JiLXAl8BP3T5pwPfAfKAUuAnAKq6W0TuBxa7fPepqvU4mnajT+cOPDzhWCaeNoin521g4bptbC9VdpdUsLukgiVf7znkmB5pSWSmKD9N3Ma5R/cizifNX3HTpjR7EFHVDcCIIOm7gDODpCtwQx1lPQs8G+k6GtOaHN69Iw9POJbc3EpGjRrF9qJyNuaXsGlXCRvzvWVTfglf7SplR3E5O4rhF/9ewsCMVK4/ZRAXjepDckJcrE/DtFJ2bWtMGyIi9OqUTK9OyZxweLeD9lXXKN/s2cfz7+cw66sqNuaXcPtby3ns/bX85KQBXD62P506JMSo5qa1akn3iRhjoijOJ/TrmsJ5g1OZc8s4Hr/0OI7unU7+3nL+OGsNJz44mwfe/ZJvC+0JjSZ0diViTDsUH+fj+yN6871jM/k4L5+n5q3nk7xdPPPRRp77dBMXjuzDT08bFOtqmlbAgogx7ZiIcMqQ7pwypDvLtxTy1Pz1zFi+jddzt/B67hYyUnykz53rPeLX/9jfhID1+DiSE3zs3VPMmqqvGZiRyqDuqfRIS8INnjFtnAURYwwAx/TtxN8uG8Wm/BKe+WgDr+duIb+0hvzSkpCOf2fN8v3rqYlxDOyeysCMjgxygWVQRkcGZIR/s5tpmSyIGGMOMiAjlQd+cAy3f+co5i/MZcjQo/c/2re88sBjfsuraiir9NZX5W2iIqkzG/NL2LBzLwWllazYWsSKrYdOzRInkPD2DOJ9PuLjxHv1CfFxQkKcjzifEO8TqivK6L9iMd3TkujeMYkM99o9zVsyOibZfS8tgP0LGGOCSk2Kp0dqPIN7dGwwb25CPllZB0buF5RUsHFXCRt2lrAxf68LLt5w4/KqGqora4CaBstdt3tHvftTEuPonpZEolbSd9kiuqQk0jklkS4pCXROSXDriW49gbKqht/TNI4FEWNMxHVJTaRLaiKjDjv46QyqyqKcXI4dcRyVNTVUVStV/tdqpbKmhuoapbK6hqXLv6Rbn4Hs3FtOfnE5O/eWs7O4nHz3urO4nNKKar7aVQrAut07Q6pbyrszyeiYREbHRO/VXdV0r7W9q7SabwvLEMFbEPcKPpH9aaXu6iwxztcu+4EsiBhjmo2I11TVITGODtR/g2PZtkSyhveqc7+qUlxexc7ichYsWU7PfoMoKK1gT2kle/ZVUFBayZ7SCgpKKtmzz1vPLy6jtKKar3eX8vXu0oYr/O7s0E7s7ZmAN/NyUpzPe433XhPdAITEeB+lJXtJz/lsfwDy+QKCkwg+F6T2FhfRN28pHZPi6ZgcT1pyPGluvWNSAh2TXFpyPIVl1ZRVVpMUH5sgZkHEGNMqiQjpyQmkJyewJyORrGE9GzwmJyeHI4ePIH9vxf4rmvz9Vzpemn8pKS0nPiEBxT9RLQfWgZoa77WyqppqhcpqpaKqhoqqGiivpxL5oc3OtPibrSHlA2DqTOJ8QmpiHB2T4kl1i7ceR2pSPKWFRaT2KWJor/TQyw2BBRFjTLshIqQlJ5CWnMDAjNR68+bm5pKVldVgmf58NTVKRbU34KCiqsZbr6ymotrbLq+qYdXqNQwZcsSBQBQQnGrcSo0qa9bl0bNPf/aWV7G3vIrisiqKyyq97bIqive/VlK4t4yyGqGiqoaisiqKyqrqrOslhWUWRIwxpiXy+YRkX1y985D5diWSVWs6mmA6l24hK6tvSO/rD2KV1TWUuKBTUl7tXqv2p63O28gRPdNCPp9QWRAxxpg2ICHOR2c3Oi2YXNlB784dIv6+NneWMcaYsFkQMcYYEzYLIsYYY8JmQcQYY0zYLIgYY4wJmwURY4wxYbMgYowxJmyiqrGuQ7MSkZ3AV2EengHkRzCflWllWplWZkssM5j+qtr9kFRvThhbQlmAnEjmszKtTCvTymyJZTZmseYsY4wxYbMgYowxJmwWRBrn6QjnszKtTCvTymyJZYas3XWsG2OMiRy7EjHGGBM2CyLGGGPCZkHEGGNM2CyINJKIZIpIUqzrASAi/3KvN8W6Lo0lIqkiEvQRcCIiIRwvAetdRGS0iJzqXyJZ13rqECci/45CuYd8vlrKZy5cwT6jTf3cikhXEckSkX5NKceVdZl7vaSpZYX5/tKY8wjlMyIiR4jIbBFZ4baPFZE7m17bg1kQabx/AatF5NFQMotIr1rbPUVksojMcNvDROTaEMoJNrIiS0R6A9e4L9KugUs9ZfUUkfPd0iOU8whFkHPtFbDuE5HLRORdEdkBrAa2iciXIvJHERkccOgcEfmliBxWq7xEETlDRJ4HrnJp1wHzgVnAve71nnrqeKKrx5X+JdzzVdVqoL+IBH+U3KHvfZKIpLr1y0XkMRHpHyTrZ6GkiUiSO5fbReRu/1LHe4f8uWvMl08j/p5XBUm7Okh5N4lIuvtSnSwiS0TknFp5BorIW3ijjS4G7hWRqSJy6N3U7P+Cvtz/txGRw0RkdK1sfUTkh0CDz6QVkTki8qGI/CeEvP8KJU29EU7TGyovQCifkWeASUCle49lQMSDpD0et5FU9Sz3K3hYiIdMBr4bsP0c8H/AHW57LfCqy1ef44OkPQXMBgYBuQHpAqhLP4j7j/JHYK7L94SI/FZV/xOQp9gdH5Sqptexq/a5Bm7PAT7A+1CvUNUa915dgdOBh0XkLVV9ERgPXAO8LCIDgT1AMhAHvAf8WVU/d+XehPe3WaCqp4vIUOAPwSrn/vMeDiwFqv2nA7wQwrmLd+qHnPsG4BMRmQKU+BNV9bEgZTwJjBCREcAtwD/de5/m3rsX0AfoICLHufcESAdSgpT3DlCI929fHuycAzxH6J+7Z4DfAv9w57JMRF4Cfh+YKcS/56XAZcBA9zfySwN2B3nva1T1LyJyLtAFuALvh9t7rry+rt6Xq+ragPcZDjzivtiXqermgDL/DtQAZwD3AcXAG7j/UyLyO7zP1x+AP4rI3ap6X5C6+V3tXqvryeN3dOCGiMQDWXXkXSIix6vq4roKa+RnJEVVF8nBF/ZVIdS5USyIhMH9algZYt7v1krKUNXXRGSS218lIqF8GHcEKftx4HEReRIvoPibcear6hd1lHMHcLyq7gBwv94+APYHEVVNc/vuB7bh/ScW4MdAZl0VrH2utbbPUtXKIMfsxvsP/YaIJLi0Mrz/+H93aRnAPlXdE+Rty1S1TEQQkSRVXS0iR9ZRxWxgmNYzrt1/7o2w3i0+vC/G+lSpqorIBcBfVXVyrauBc/G+oPoCgUGoGLg9SHl9VXV8iPVszOcu1C+fBv+ewKd4n6EM4H8D0ouBZUHy+9/0O8C/VHWlHFyRu4HbVHWtCxhnA18CRwFT3HvdBUwMOGaMqo4Skc8BVLUg8OpRVe8Vkd/gBaw+qhpYz0OoaoNz77m/8+14X/ZFAbsqqft+jTHA5SKyCe8Hif+Hy7EBeRrzGckXkcNxP4pEZALe3yeiLIg0vxIR6caBf9ixeL8mGxL0Ut1ZDbwIvIn3wfuXiDyjqk8EyevzBxBnF3U3a35fVUcEbD8pIl/g/UdulGABJJQ8Lq2+D/4WEekMvA28LyIF1D3B5gqgVwPlNYqq3gsgIh3d9t56she7L5fLgVNFxAckBJT1PPC8iPyXqr4Rwtt/KiLHqOryEPI25nMX6pdPg39P94X7FXBCCHUEyBWR94CBwCQRScO7ivAbpar+AKHAMar6tXhNn4+q6pIgTVWV4vW/+c+ne60yAbap6ivuyqleIrLRlbVTVccEy6OqDwIPisiDwCPAEXhXO/56B+O/+jrFbc/HuwoPLLcxn5Eb8ALWUBHZCmzE++xFlN1s2MxEZBTwBDAc7z9hd2CCa6+s77jPVfW4OvYtA05Q1RK3nQp8VusXjD/vI8AI4GWX9CO8y/9bg+T9FPgb8AreB/9S4AZVPTGUc21uInIa0AmYqaoVQfbPAUYCiwho/lHV7zfhPYfjXan5+6DygStV9ZArVdcUcRmwWFU/cl9841T1hSB5v4vXFOL/4qF2E4uIfAkMwWtSKyf4L1d/Xv/n7mi8q+g6P3ciMgjvy+dEoADvy+fH/l/gIjIV7/OQRgN/TxH5WFVPDtJMGLR50AXWkXjBNQnvCqaP/weR+xGT5a6kct3fr1hE0oEPVTVbRJao6qiAMn+M9zkfBTwPTADuVNXXa597pInI9cCv8K4clgJj8f5vnhEk703AdRz4MXghEPTHoPvhdDcHWh/mAfep6iE/DNz3gU9Vi5t+RoeyIBIDrl30SLwPyppQfqWLyC9U9e917FuO10RV5raT8b6ojgmS92FgIXCyS/oIGFtHEBkA/AU4Ce8L4BPg16q6qaH6tkQuyBxCVec1ocxPgTtUdY7bHgf8oSmBVkSewmvfPh2v32QCsEhVr62Vrz9BfrkGa25xn4kb8X7tFuN1wj7h/8zUyhunqtV1ffnU9Xf0a+Lf8zq8fq6gX7oi8mfgI1V9Q0TOx/siXY/X//cAXjPQBFX9ucvvc2XsBs7E+z83W1VXhVvHRp7Pcg702Y3099mp6kVB8jbmx+AbeD9Cn3dJVwAjAssVb7TWfwEDCGh1aqC/p/E0ClMD29LglMwn4v0ivdK/NLG8m4Ev8EYl3YP3n+/XdeRdEiRtWaz/Jq11Ab5oKA342L0WA0UBSzFQVNe/R8BrR7wvztr5bgKW441Kuw+vj+GXddTzNbyAdLpbngFeryPv13hXImfifmjWke/hUNIa+fdcjnf1tdRtDwXeDNjfA1gCHO22fS7Nh9cvkgv0rlXm5zH8fCx2r0uBJLe+sr5zD9hOBpbXkXdpQ2nATLxBCP+DN5DjFuCWSJ+j9Yk0s1BGtDSWqj4mInM5cHXxEz0wesn/vj8HfgEMcr94/NLwrjCC1bU7cD2H/pK5Jty6xkJjm1QaaYOI3IXXpAVem/OGwAyqerJ7DbXTfp97LRVvCPcugg9ouBbvKtL/y/Vh3BVGkLzDVTVwROEc1xwWzFDgfLw29ckiMg14RVU/rpXvbKD2Fex5QdIao96BEqq6Q0Quxht0sQNYgPf/aCzQD6/Z7ZtaZc4Wkf/CC0bN3fTSmD67/wMWijd8GbzmrLpGbe4TkZP9/yYichIHPjd+jRl4ETYLIs0vlBEtjaaqS/B+odXlJWAG8CBwW0B6sXojpIJ5B6+56wNCG87YIoXxJd4gEfmXql6B9/cZgNeODV6TUlOD7DT3xfNHvH9TxbuKOKQaHPzvUs2B0U21LRGRsaq6wNV/DJATLKOqluJdubwmIl3wmjTn4Q2xDusHSSM0+KWrquuBc0VkCF7/HsBDqrq6jjJ/ine1XiUiZUTmx0NIVPUHbvUe1yfXCe8KIVjeBn8MBvg5Xgd7J7ddwKH34jRm4EXYrE+kmYnI68CvVDXiQ+0iTUSWqurIWNejJXK/4s/CC8ync+DeHGD/0OVIvE8SXhNHsA7Tm/G+OAJ/uT6nqn8OyLPc1SsBrx/ua7fdH1hd6+oksOzT8Dqjx+MFm1fVjQZyX1xdaNwPkkZraKBEI8vqijcIIXCgQth9N7HmPhcT8Fo1OuONtFNVvU+8m0Rr8C4SQhp40aS6WBBpHo0Z0dJSiMjvgU9VtTF30rYLIvIrvF+Dg4Ctgbvw/qMecqNnI8s/kUObEYON4hpFwCCJIM2Ywe6I30+Dd8JvAj7HuxqZ4m8uC9ifrqpFUsesCJEMJJFQR2f9p6p6Zizr1RQiMhNv+O8SAq5GVfV/3dXbyLqODfZv3qS6WBBpHu5XlQAP43V07d+F1xkZdLx5LLk+hFS8YFdJMzYDtBYi8qS6kUARLDNov5mq/iqS71PP+6eralE9+6ep6vkB90sENqE1OYBGWmNGSLUWIrJCVYfXse+gIc7RZn0izcR/6SwiCbUvo0WkQ2xqVT9VTQvWDGAOiHQAcaLSb9YIFSJyA4fep3KNez3fJX2C11fyUT39ES1BY2Y1aC3q6+/o4Zo6g9LgU/KEzYJIM4lyZ2RU1NUMgDf000RPxO+sb6R/4c2CcC7e0OEfA8Huq5iMd4/KE+Ld4b4EL6D8pbkqGqLGjJBqLU4GrnZXg7X7O+LwhoU3OBt2JFhzVjNprs7ISGqLzQAtWUvpNxM3O4KILFPVY8Wbv+wjVR0bJG8c3mfkdOBneHOcDW2OeoYjkp31sVRXX5eqfmXNWW2UG11TiDd1SGvRFpsBWrJHOdBvdmFAuj+tufhnUNgj3rQu3+Ld0HcQEZmN12f2Gd5Q5/0Te7ZUrXlEVqAGOseb5QrEz4KIqU9bbAZosVpQv9nT7v6QO/Fmxu2INzNubcvwpjUfjvcDaY+IfKaqtW96M82rWZubrTnLhKStNAO0ZIH9ZnjzQfmlAZ+oasRnYK2jHoFzLvlnGVatY84l8WbavRr4DdBLVVv1UxhN41gQMaaFaCn9Zu4eBP/Drg66B6FWvhvxOtazgE14TVofqeqHzVVXE3sWRIwxB6nvHoRa+X6DFzhyVTXiT8wzrYMFEWPMQUTkabxp4qM655JpGyyIGGOAg+bZapY5l0zbYEHEGAOEN8+WMRZEjDHGhM0X6woYY4xpvSyIGGOMCZsFEWPCJCJ3iMhKEVkmIkvd0wKj9V5zRSQ7WuUbEy6b9sSYMIjICXjPIR+lquUikgEkxrhaxjQ7uxIxJjyZQL6qlgOoar6qfiMid4vIYhFZISJPi4jA/iuJP4lIjoisEpHjReRNEVnnniCJiAwQkdUi8m+X5z8iklL7jUXkHBH5TESWiMjrItLRpT8kIl+6K6NHm/FvYdoxCyLGhOc9oJ+IrBWRv7u5xQD+qqrHuzu+O+BdrfhVqGo28BTwDnAD3uSFV4tIN5fnSODvqnoUUIQ3l9Z+7ornTuAsN913DnCzO/4HwNHufo7fR+GcjTmEBRFjwqCqe/HmjJoI7AReFZGrgdNFZKG7ce8MvKcD+k1xr8uBlaq6zV3JbAD6uX2bVdX/kLIXOfD8dL+xwDDgExFZClwF9Meb66oMmCwiFwGlkTpXY+pjfSLGhElVq4G5wFwXNH4KHAtkq+pmEbmHgx8r7H/AVE3Aun/b/3+x9o1btbcFeF9VD3kujYiMxpsGfAJwI14QMyaq7ErEmDCIyJEiMiQgaSSwxq3nu36KCWEUfZjrtAe4DPi41v4FwEkiMtjVI1VEjnDv10lVpwP/DYwI472NaTS7EjEmPB3xni3eGagC8vCatvbgPSP9W2BxGOWuAW4QkWeBL4EnA3eq6k7XbPaye+4HeH0kxcA7IpKMd7VycxjvbUyj2bQnxrQQIjIAmBbKNOzGtBTWnGWMMSZsdiVijDEmbHYlYowxJmwWRIwxxoTNgogxxpiwWRAxxhgTNgsixhhjwmZBxBhjTNj+H2s4HCsGz97hAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tokens.plot(30)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "from nltk.stem import PorterStemmer\n", "porter = PorterStemmer()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "pd.options.mode.chained_assignment = None # default='warn'" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "\n", "subset_humanist_vols = humanist_vols[0:2]\n", "\n", "def stem_words(row):\n", " stemmed_words = ''\n", " for token in row.split(' '):\n", " stemmed_words += porter.stem(token) + ' '\n", " return stemmed_words\n", "\n", "subset_humanist_vols['stemmed_text'] = subset_humanist_vols.text.apply(stem_words)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(subset_humanist_vols[0:1]['stemmed_text'].values)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def lemmatize_words(row):\n", " #Code goes here\n", "\n", "subset_humanist_vols.apply(lemmatize_words)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer\n", "\n", "#save our texts to a list\n", "documents = humanist_vols.text.tolist()\n", "\n", "#Create a vectorizer\n", "vectorizer = TfidfVectorizer(max_df=0.9, min_df=2)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n", "/Users/EZCorp/Sites/IS310/is310_env/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n" ] } ], "source": [ "# Fit the vectorizer to our emails\n", "transformed_documents = vectorizer.fit_transform(documents)\n", "\n", "# Now get the top features for each document\n", "transformed_documents_as_array = transformed_documents.toarray()\n", "\n", "dates = humanist_vols.dates.tolist()\n", "tfidf_results = []\n", "for counter, doc in enumerate(transformed_documents_as_array):\n", " # construct a dataframe\n", " tf_idf_tuples = list(zip(vectorizer.get_feature_names(), doc))\n", " one_doc_as_df = pd.DataFrame.from_records(tf_idf_tuples, columns=['term', 'score']).sort_values(by='score', ascending=False).reset_index(drop=True)\n", " one_doc_as_df['dates'] = dates[counter]\n", " tfidf_results.append(one_doc_as_df)\n" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "import warnings\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
termscoredates
0http0.7041042000-2001
0http0.7029401999-2000
0http0.6880431998-1999
0http0.6510861997-1998
0utorepas0.6486171987-1988
0http0.6244482001-2002
0http0.6054092007-2008
0http0.5957852004-2005
0http0.5903062003-2004
0bitnet0.5873121989-1990
\n", "
" ], "text/plain": [ " term score dates\n", "0 http 0.704104 2000-2001\n", "0 http 0.702940 1999-2000\n", "0 http 0.688043 1998-1999\n", "0 http 0.651086 1997-1998\n", "0 utorepas 0.648617 1987-1988\n", "0 http 0.624448 2001-2002\n", "0 http 0.605409 2007-2008\n", "0 http 0.595785 2004-2005\n", "0 http 0.590306 2003-2004\n", "0 bitnet 0.587312 1989-1990" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tfidf_df = pd.concat(tfidf_results)\n", "tfidf_df = tfidf_df.sort_values(by=['score'], ascending=False)\n", "tfidf_df.head(10)\n" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['http' 'utorepas' 'bitnet' 'www' '2007' '1997' '2006' '2004' '1996'\n", " '2005' '2002' '2003' 'ninch' 'gopher' 'html' '1998' '2008' '1999' 'astra'\n", " 'ippe' 'vax' 'saddam' 'uottawa' 'doi' 'prolog' 'qs' 'amico' 'kraft' 'cdt'\n", " 'acadvm1' '1007' 'hussein' 'penndrls' 'fqs' '441495' 'kessler' 'cst' 'na'\n", " 'celia' 'epas' 'tlg' 'brownvm' 'neach' 'carf' 'forks' 'werman' 'xxx'\n", " 'wmccarty' 'rahtz' 'htm' 'unicode' 'dfl' 'mellen' 'ocp' 'sanskrit'\n", " 'kevitt' 'pacling' 'bene' 'waxweb' 'iraq' 'missile' 'idbsu' 'earn'\n", " 'wikipedia' 'easi' 'vspace' 'pali' 'ruhc' 'ubiquity' 'kurzweil' 'nota'\n", " 'coombs' 'kleio' 'iee' 'url' 'google' 'cti' 'kentvm' 'giampapa' 'rs'\n", " 'hurd' 'aaai' 'hypercard' 'cont' 'gas' 'chiba' 'neder' 'snobol' '3dx'\n", " 'mcswain' 'strangelove' 'fonorola' 'texpert' 'pdt' 'cdn' 'preprints'\n", " 'ccat' 'mainframe' 'mccarty_at_kcl' 'earli']\n" ] } ], "source": [ "print(tfidf_df[0:200].term.unique())\n" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1310\n", "1 504\n", "2 2355\n", "3 1319\n", "4 851\n", "5 592\n", "6 604\n", "7 287\n", "8 525\n", "9 389\n", "10 541\n", "11 343\n", "12 341\n", "13 486\n", "14 374\n", "15 288\n", "16 391\n", "17 227\n", "18 264\n", "19 233\n", "20 229\n", "Name: text, dtype: int64" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "humanist_vols.text.str.count('computer')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "b8087021d93a066a5e378473bedf63069d425a0836de933e31df96113e534e5c" }, "kernelspec": { "display_name": "Python 3.9.10 ('is310_env': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.10" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }